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Many technological applications of superconductors and superconducting 

materials involve Josephson junctions (JJs)

Typical types of junctions: SIS, SNS (I: insulator, N: normal metal), or more 

exotic combinations (sIs, sId, dId,...)

Each combination comes with its own special phenomenology, e.g. the 

typical current-phase relation                            may vary.

superconductor 1 superconductor 2

weak link

I = Imax sinϑ



Our interest.

Motivated by the physical significance of such configurations we would like 

to understand the properties of systems that exhibit:

i) a layered structure,

ii) are strongly coupled in the direction of each layer, and

iii) the interlayer interactions are weak

Dimensions can vary, more complicated networks can be imagined.
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Physics of a single layer.

On each (2+1)-dimensional layer lives a strongly coupled (large-N) QFT. 

We assume this theory has a dual weakly curved gravitational description

(a holographic superconductor, an example below...)
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Physics of the interlayer coupling.

2-layer system: w/o coupling the total QFT=QFT1 ⊕ QFT2 is described by 

the direct sum of actions                         .

The system has:     2 separate large-N gauge symmetries

                               2 separately conserved stress-energy tensors

                               2 separate sets of global R-symmetries

                               ... 

The dual gravity description is obvious: a trivial bi-gravity (bi-string) 

theory.
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S = S1 + S2



In field theory the unique type of inter-theory coupling that respects the 

separate gauge invariances of QFT1 and QFT2 is one effected by multi-trace 

deformations.

For example, if O1 is a scalar single-trace operator of QFT1 and O2  a scalar 

single-trace operator of QFT2 then one can consider interactions of the form                         

where W is multi-trace, e.g. a double trace of the form  

This coupling may be relevant or irrelevant, break relative symmetries etc...

g12 scales as O(N0) and preserves the 1/N expansion.
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�
d(2+1)x W (O1,O2)

W = g12O1O2



What happens in gravity?      ➠    designer multi-gravity

The bi-gravity theory becomes non-trivial. 

Such bi-gravity theories have a well-known large-N description in the 

AdS/CFT correspondence.

At tree-level in gravity the boundary multi-trace interactions map

to mixed boundary conditions for the dual fields.

Beyond tree-level massive gravity...
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An illustrative model

Assume a large-N (2+1)-dimensional QFT with a dual bulk gravitational 
description that can be reduced to the (3+1)-dimensional Einstein-abelian 
Higgs model:

R: Ricci scalar,
A: abelian gauge field with F=dA its field strength,
φ: a charged complex scalar field with U(1) charge q, and  

G, J, Vbulk are model-dependent functions of |φ| (left arbitrary in our 
discussion).
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Sbulk =

�
d3+1x

√
−g

�
R− 1

4
G(|φ|)F 2 − (∇|φ|)2 − J(|φ|)(∇θ − qA)2 − V (|φ|)

�

φ = |φ|eiθ

bulk



Under gauge-gravity duality: 

• A   maps to  a U(1) current on the boundary QFT

• φ   maps to  a complex scalar operator O with scaling dimension Δ
                        (our `Cooper-pair’ operator whose vev will break the U(1) leading to  

                         superfluidity/superconductivity)

For asymptotically AdS4 solution near the boundary
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ds2 � r2dxµdxµ +
dr2

r2

φ � α

r∆
+ . . .+

β

rd−∆
+ . . .

A � A(0) + . . .+
A(1)

r

vev, source
of O



On the QFT side the weak link is implemented via a multi-trace interaction

On the gravity side W translates to scalar field mixed boundary conditions.

With asymptotics

W translates to the mixed bc’s
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Stot = S1 + S2 +

�
d2+1x W (O1,O2)

φ1 � α1

r∆1
1

+ . . .+
β1

rd−∆1
1

+ . . .

φ2 � α2

r∆2
2

+ . . .+
β2

rd−∆2
2

+ . . .

β1 = ∂α1W (α1,α2) , β2 = ∂α2W (α1,α2)

Building a junction



Finding the ground state

Standard practice in field theory: 

➠ compute and minimize the quantum effective potential. 

Typically very hard.

Gravity gives a tractable prescription.

For boost invariant planar solutions (A=0, T=0) in the above example

V (α1,α2) = W (α1,α2) +
2�

i=1

�Wi(αi)

�Wi(αi) =
si∆i

3
|αi|

3
∆i

More complicated at finite temperature
and density but we can do it...
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A holographic Josephson junction example

1 2

This quiver diagram refers to a QFT Lagrangian of the form

which gives

Ltot = L1 + L2 + g|O1|
2 + g|O2|

2 + h
�
eiϑO1O

†
2 + e−iϑ

O
†
1O2

�
, h ∈ R , ϑ ∈ [0, 2π)

V (α1,α2) =
2�

i=1

�
g|αi|2 +

s

δ
|αi|δ

�
+ h

�
eiϑα1α

∗
2 + e−iϑα∗

1α2

�
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The ground state is determined by solving the algebraic extremization 
equations

In the algebraically simple case δ=4  

gα1 + he−iϑα2 +
s

2
α1|α1|δ−2 = 0

gα2 + heiϑα1 +
s

2
α2|α2|δ−2 = 0

α2 = −h−1eiϑ
�
g +

s

2
|α1|2

�
α1

(1) α1 = 0 , (2) |α1|2 =
2

s
(±h− g) , (3) |α1|2 = −1

s

�
g ±

�
g2 − 4h2

�



Networks from designer multi-gravity
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The framework can be generalized in a straightforward manner to describe 
networks of very diverse architecture and internal structure

vertices/sites large-N QFTs with 
gravity duals

links multi-trace interactions 
mixed bcs

examples: with 2-trace 
links

with 3-trace 
links

in quenched disorder 
computations via the 

replica trick

New `potential’: 

V = W (α1, . . . ,αk) +
k�

i=1

�Wi(αi)



Linear Josephson junction array as a simple model of a layered SC

(deconstructing an extra space dimension)
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The vacuum is determined by solving the algebraic eqs of a discrete 

dynamical system

The algebraically simple case δ=4 has been studied extensively in the 

literature of dynamical systems (see e.g. review by Tsironis, Hennig ’99) with 

applications in diverse condensed matter systems.

gαn + h
�
eiϑαn−1 + e−iϑαn+1

�
+

s

2
αn|αn|δ−2 = 0
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Rich solution space: complexity 

1) Chaos and bifurcation.

2) Solitons (pinned superconductivity), kinks (junction)
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Diverse possibilities and applications

(Un)conventional Josephson junctions

z

left superconductor right superconductor

weak link interface

alternative to other approaches 
based on inhomogeneous holo-
SC solutions (e.g. Horowitz, 

Santos, Bay ’11)



Outlook
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Many possibilities for further work, e.g.

1) Physics of unconventional JJs

2) Magnetic fields/charge density/temperature

3) JJNs with different architectures

4) Time-dependence

5) ...


