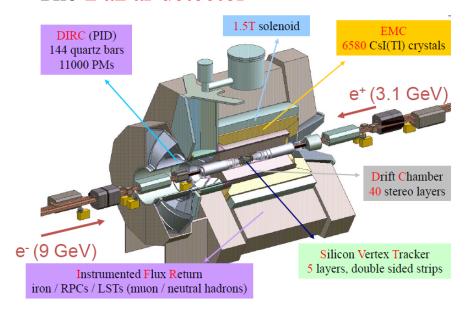
Highlights from the BABAR experiment

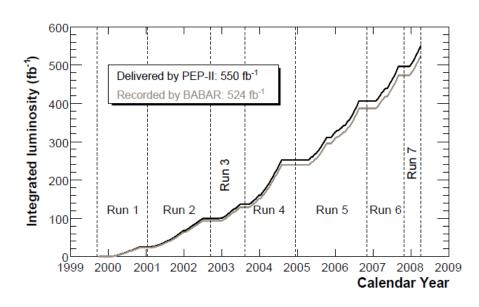
Nicolas ARNAUD

Laboratoire de l'Accélérateur Linéaire, IN2P3/CNRS & Université Paris Sud

ICFP 2012


Kolymbari, Greece – June 10-16

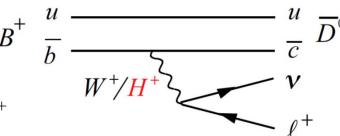
Outline


- Emphasis on two analysis
 - New B \rightarrow D^(*) $\tau \nu$ result submitted to PRL: <u>arXiv:1205.5442</u> [hep-ex]
 - Direct measurement of time-reversal violation to be submitted soon
- Quick report not exhaustive ! of some recent results based on full dataset
 - B_s semileptonic branching fraction already published
 - B $\rightarrow \nu \overline{\nu}(\gamma)$ aka B \rightarrow 'invisible' submitted this Wednesday! <u>arXiv:1206.2543</u> [hep-ex]
- See parallel session talks for latest BaBar results on
 - Searches for low-mass Higgs and dark gauge bosons (G. Lafferty, last Monday)
 - Searches for new sources of CP violation (G. Simi, this evening at 18:20)
- All analysis reported in this talk use the full dataset available see next slide

BaBar in a nutshell

• The BaBar detector

• The BaBar dataset


- Data taking ended more than 4 years ago (April 7th 2008)
 - → But analysis are still going on and will continue to do so for a few years
- 424 fb⁻¹ @ $\Upsilon(4S) \Leftrightarrow (471.0 \pm 2.8) \times 10^6 \, B\overline{B} \text{ pairs}$ 'onpeak'
 - 44 fb⁻¹ recorded 40 MeV below the peak 'offpeak' to study background
- 30.6 fb⁻¹ @ $\Upsilon(3S)$ and 15.0 fb⁻¹ @ $\Upsilon(2S)$ onpeak + offpeak $\rightarrow \eta_b(1S)$ discovery + searches for low-mass Higgs and dark gauge bosons
- ~3.9 fb⁻¹ from the final energy scan up to 11.2 GeV

$$B \rightarrow D^{(*)} \tau \nu$$

arXiv:1205.5442
Submitted to PRL

Motivation

- Tree-level semileptonic decays mediated by a W⁺
 - $\rightarrow \tau$ mode: sensitivity to additional contributions, e.g. from an intermediate charged Higgs Boson H⁺

Z. Phys. C46, 93 (1990)

PRD 78, 0156006 (2008)

PRD 85, 094025 (2012)

+ updates for this analysis

- Decays sensitive to V_{cb} and hadronic form factors
 - \rightarrow Most of these dependences cancelled in the ratio (τ mode) / (e, μ modes)

$$R(D^{(*)}) = \frac{BF(B \to D^{(*)}\tau\nu)}{BF(B \to D^{(*)}l\nu)} \leftarrow \text{`Signal' decays} \leftarrow \text{`Normalization' decays}$$

- Previous measurements from B-factories exceed Standard Model (SM) predictions
 - → Low significance statistically limited
- New BaBar result based on the full data sample
 - → Twice the statistics of the previous analysis
- Improved reconstruction
 - Better B selection see next slide
 - D^(*) and 1 reconstruction extended to lower momenta
 - → Signal yield increased by more than a factor 3!
- Main experimental challenge: separate final states based on the number of v's

Event selection

- Limited kinematical information due to neutrino(s) in the final states
 - \rightarrow Exclusive hadronic reconstruction of one of the B mesons the 'B_{tag}'
- B_{tag} candidates selected using two kinematical variables
 - The beam energy-substituted mass $m_{ES} = \sqrt{(E_{beam}^*)^2 (p_{tag}^*)^2}$ → Peaks at the B mass for signal with a 2.5 MeV/c² resolution

 - The energy difference $\Delta E = E_{tag}^* E_{beam}$ → Centered at 0 for signal with a 18 MeV resolution
- Signal B corresponds to the rest of the event (tracks + energy deposits)
 - → Improved knowledge of kinematics and missing energy
- B_{tag} candidate combined with a D^(*) meson candidate and a charged lepton l
 - No additional charged particle
 - BB pair with the lowest extra energy selected
 - → Full reconstruction of the event except neutrinos
- Only purely leptonic decays of the $\tau (\to l^- \overline{\nu}_l \nu_{\tau})$
 - → Same particles in the final states for all decay modes
 - Signal (normalization) events have 3 (1) neutrinos in the final state

Fit

- 2D unbinned maximum likelihood fit all PDFs extracted from high stat. MC
 - Invariant mass of the undetected particles $m_{miss}^2 = (P_{ee} P_{Btag} P_{D(*)} P_{\ell})^2$
 - \rightarrow Peaks at 0 for normalization events; broad distribution up to ~9 GeV² for signal
 - Lepton momentum in B_{sig} rest frame p_{ℓ}
 - \rightarrow Signal spectrum softer for signal events (secondary particle from τ decay)
- 4 $D^{(*)}$ lv samples = $\Sigma(8 \text{ contributions})$
 - $D^{(*)}\tau v$ and $D^{(*)}(e,\mu)v$ [4]

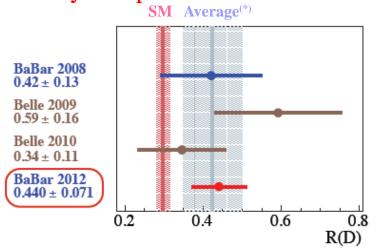

 - Backgrounds: charge cross-feed, other BB, continuum [3]
- 4 $D^{(*)}\pi^0$ lv control samples
 - → Constrain background with charm resonances heavier than D*
- Simultaneous fit on the 8 samples
 - Yields for the last 3 background categories are fixed to the expected value
- Main systematics uncertainties
 - D^{**} lv background dominant \Rightarrow conservative estimation
 - Limited Monte-Carlo signal samples
 - Continuum and BB background

Fit results: $B \rightarrow D^* \tau \nu$

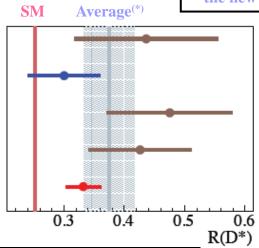
	$D^{*0}\tau\nu$	$D^{*+}\tau\nu$	$D^*\tau\nu$
$N_{ m sig}$	639 ± 62	245 ± 27	888 ± 63
Significance (σ)	11.3	11.6	16.4
$R(D^*)$	0.322 ± 0.032	0.355 ± 0.039	0.332 ± 0.024

Statistical errors only

 $m^2_{miss} > 1 \text{ GeV}^2$


Fit results: $B \rightarrow D\tau \nu$

	$D^0 \tau \nu$	$D^+ \tau \nu$	$D\tau\nu$	Statistical errors only
$N_{ m sig}$	314 ± 60	177 ± 31	489 ± 63	criors only
Significance (σ)	5.5	6.1	8.4	$150 - \frac{1}{D^0 + D^+} \text{m}^2_{\text{miss}} > 1 \text{ GeV}$
R(D)	0.429 ± 0.082	0.469 ± 0.084	0.440 ± 0.058	† † BABAR
Events/25 MeV 100- 100- 80- 80- 40- 20- 0 M ² _{miss} (Events/100 MeV	200 D ⁰ 1.0 s	spin constraine m ² _{miss} < 12.0 GeV ² 15 15 2	d 100


Comparison with the Standard Model prediction

• Fully compatible with earlier measurements ...

(*)Averages do not include the new BaBar results

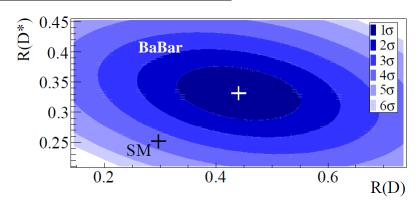
Belle 2007 0.44 ± 0.12 BaBar 2008 0.30 ± 0.06 Belle 2009 0.47 ± 0.10 Belle 2010 0.43 ± 0.09 BaBar 2012 0.332 ± 0.029

535M $B\overline{B}$

232M $B\overline{B}$

 $657M B\overline{B}$

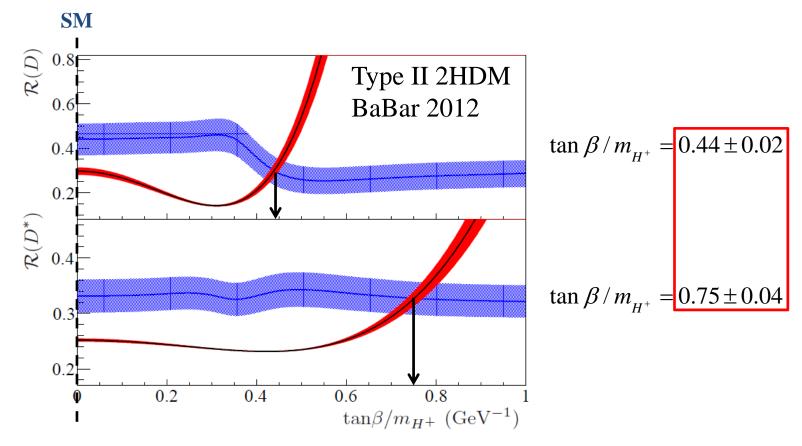
657M $B\overline{B}$


 $471M \ B\overline{B}$

•	and above
	the SM predictions!

	R(D)	R(D*)
BaBar 2012	0.440 ± 0.071	0.332 ± 0.029
Standard Model	0.293 ± 0.017	0.252 ± 0.003
Difference	2.0 σ	2.7 σ

- Combination of the two measurements
 - Correlation of −0.27
 - \rightarrow Feed down from D* in D sample


$$\rightarrow \chi^2/NDF = 14.6/2,$$

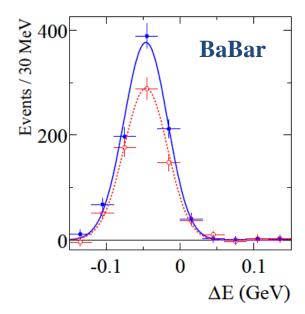
p value = 6.9×10^{-4} [3.4 σ away]

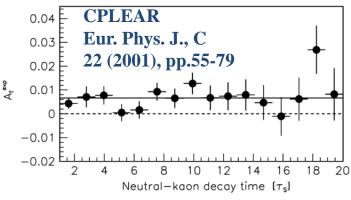
Interpretation for type II two-Higgs-doublet model

• Simulated events reweighted at the matrix element level for 20 values of $\tan \beta / m_{H^+}$ \rightarrow PDFs and efficiencies updated; fits repeated then

• Results

- Each ratio matches the prediction at values of $\tan \beta / m_{H^+}$ which are not compatible \rightarrow Model excluded at 99.8% CL on the whole range for H⁺ mass > ~10 GeV
 - Low-mass range already excluded by $B \rightarrow X_s \gamma$ data


Time-reversal violation


Preliminary result

To be submitted soon

Time reversal violation: challenging!

- The CP and T symmetries are theoretically connected through the CPT theorem
 - CP violation (CPV) established in K, B and D systems
 - But no proof yet of T non-invariance (TRV), not assuming CPV nor CPT
- TRV in a decay process requires
 - Reversal of motion $(t \rightarrow -t)$
 - And exchange of |in> and |out> states
 - → Experimentally challenging
- Searching TRV in decays
 - $\Gamma(\mathbf{K}^-\pi^+ \to \overline{\mathbf{B}}^0) \neq \Gamma(\mathbf{K}^+\pi^- \to \mathbf{B}^0)$???
- Searching TRV in mixing
 - CPLEAR: Prob($K^0 \to \overline{K}^0$) \neq Prob($\overline{K}^0 \to K^0$)
 - → CPV and TRV cannot be distinguished
 - Nothing similar in the B^0 system ($\Delta\Gamma$ ~0)
- Searching TRV in interferences
 - Neither motion reversal nor exchange of initial and final states!

Innovative analysis methodology

- Use Einstein-Podolsky-Rosen entanglement @ $\Upsilon(4S)$ to overcome the problem of irreversibility
- Method described in J. Bernabeu *et al.* arXiv:1203.0171 [hep-ph]

- $\Upsilon(4S)$ decay: use two sets of orthogonal states
 - Flavor eigenstates B^0 and \overline{B}^0
 - CP eigenstates B_{CP+} and B_{CP-}

$$\langle in \rangle = \frac{1}{\sqrt{2}} \Big[B^{0}(t_{1}) \overline{B}^{0}(t_{2}) - \overline{B}^{0}(t_{1}) B^{0}(t_{2}) \Big] = \frac{1}{\sqrt{2}} \Big[B_{CP+}(t_{1}) B_{CP-}(t_{2}) - B_{CP-}(t_{1}) B_{CP+}(t_{2}) \Big]$$

• Look for the following transitions

$$\blacksquare B^0 \to B_{CP+}$$

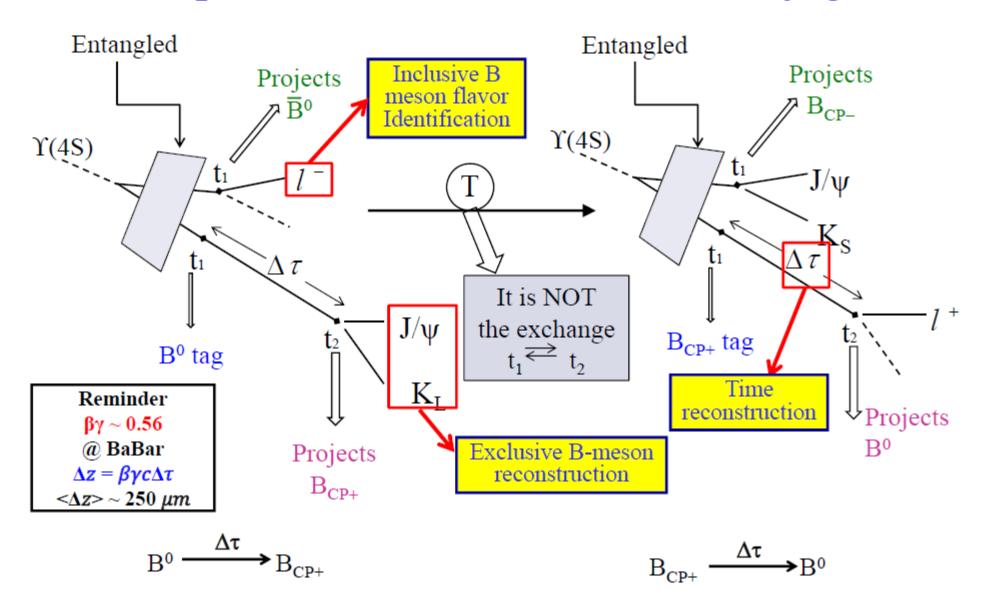
$$\blacksquare B^0 \to B_{CP-}$$

$$\blacksquare \overline{\mathrm{B}}^0 \to \mathrm{B}_{\mathrm{CP}^+}$$

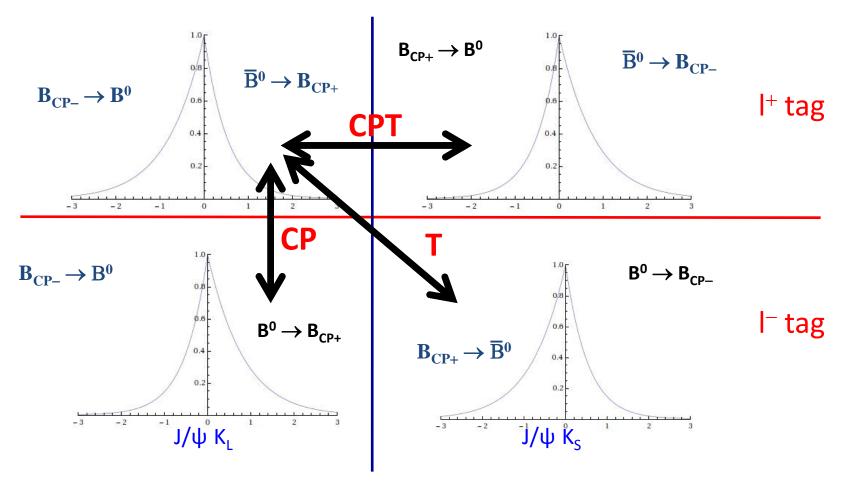
$$\blacksquare \overline{\mathrm{B}}^0 \to \mathrm{B}_{\mathrm{CP}}$$

• and for their T-conjugates

$$\blacksquare B_{CP+} \rightarrow B^0$$


$$\blacksquare B_{CP-} \rightarrow B^0$$

$$\blacksquare B_{CP^+} \to \overline{B}{}^0$$


$$\blacksquare B_{CP-} \to \overline{B}{}^0$$

- $\Delta \tau = t_{2\text{nd decay}} t_{\text{first decay}}$
 - Time ordering matters!
- Tag B⁰ flavor using e.g. the sign of a prompt charged lepton (B⁰ \rightarrow l⁺X; $\overline{B}^0 \rightarrow$ l⁻X)
- Tag CP eigenstates by the final states $J/\psi K_I$ (CP+) and $J/\psi K_S$ (CP-)

Example of an event and of its T-conjugate

Connecting transitions through T, CP and CPT

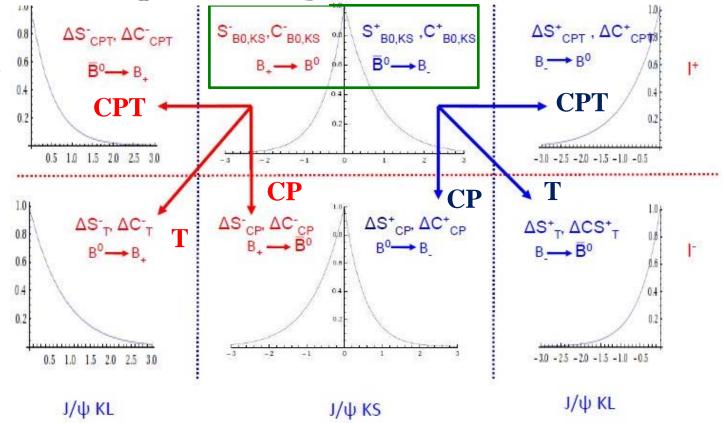
- In total we can build
 - 4 independent **T** comparisons
 - 4 independent CP comparisons
 - 4 independent CPT comparisons

- T implies comparison of
 - Opposite Δτ sign
 - Different reco states $(J/\psi K_s \text{ vs } J/\psi K_L)$
 - Opposite tag states (B^0 vs \overline{B}^0)

Fit

• Time dependent decay rates $(\tau>0)$:

 Δm_d : B⁰ mass difference


- Different C and S for processes connected by T symmetry ⇒ TRV
- Signal model: $H_{\alpha,\beta}(\Delta t) \propto$ $g_{\alpha,\beta}^+(\Delta t_{\mathrm{true}}) imes \mathrm{H}(\Delta t_{\mathrm{true}}) \otimes \mathcal{R}(\delta t, \sigma_{\Delta t}) + g_{\alpha,\beta}^-(\Delta t_{\mathrm{true}}) imes \mathrm{H}(-\Delta t_{\mathrm{true}}) \otimes \mathcal{R}(\delta t, \sigma_{\Delta t})$
 - H: Heaviside step function; R: resolution function; $\delta t = \Delta t \Delta t_{true}$
- Inperfect tagging taken into account
 - → Mix correct and uncorrect flavor assignments; dilution of asymetries
- Unbinned maximum likelihood fit to the $c\bar{c}K_S$ and $c\bar{c}K_L$ events, split by flavor
- Background accounted for by adding terms to the likelihoods

Alternative parameterization: $\{S,C\} \rightarrow \{\Delta S, \Delta C\}$

- 8 {S,C} sets \Rightarrow T, CP and CPT violating parameters { $\Delta S_{T,CP,CPT}$, $\Delta C_{T,CP,CPT}$ }
- Definition of the $\Delta S_{\{T,CP,CPT\}}$ parameters
 - Decays with a B^0 and $J/\psi K_S$ taken as references

$$\rightarrow$$
 e.g. $\Delta S_{\rm T}^- = S_{\ell^- X, J/\psi K_L^0}^+ - S_{\ell^+ X, c\overline{c} K_S^0}^-$

• Similar definitions for ΔC

• Any non-zero $\Delta S/\Delta C$ parameter corresponds to a symmetry violation

Fit results

Parameter	Final result	Expected values given $\sin(2\beta) \approx 0.7$
$\Delta S_{\mathrm{T}}^{+}$	$-1.37 \pm 0.14 \pm 0.06$	-1.4
$\Delta S_{\mathrm{T}}^{\frac{1}{2}}$	$1.17 \pm 0.18 \pm 0.11$	1.4
$\Delta C_{ m T}^+$	$0.10 \pm 0.16 \pm 0.08$	0.0
$\Delta C_{\mathrm{T}}^{-}$	$0.04 \pm 0.16 \pm 0.08$	0.0
$\Delta S_{\mathrm{CP}}^{+}$	$-1.30 \pm 0.10 \pm 0.07$	-1.4
$\Delta S_{\mathrm{CP}}^{-1}$	$1.33 \pm 0.12 \pm 0.06$	1.4
$\Delta C_{\mathrm{CP}}^{+}$	$0.07 \pm 0.09 \pm 0.03$	0.0
$\Delta C_{\mathrm{CP}}^{-}$	$0.08 \pm 0.10 \pm 0.04$	0.0
$\Delta S_{\mathrm{CPT}}^{+}$	$0.16 \pm 0.20 \pm 0.09$	0.0
$\Delta S_{\mathrm{CPT}}^{-1}$	$-0.03 \pm 0.13 \pm 0.06$	0.0
$\Delta C_{\mathrm{CPT}}^{+}$	$0.15 \pm 0.17 \pm 0.07$	0.0
$\Delta C_{\mathrm{CPT}}^-$	$0.03 \pm 0.14 \pm 0.08$	0.0
$S_{\rm B^0, K_S^0}^+$	$0.545 \pm 0.084 \pm 0.06$	0.7
$S_{\rm B^0, K_s^0}^{-}$	$-0.660 \pm 0.059 \pm 0.04$	-0.7
$C_{\mathrm{B^0,K_s^0}}^+$	$0.011 \pm 0.064 \pm 0.05$	0.0
$C_{{ m B^0},{ m K_S^0}}^{-}$	$-0.049 \pm 0.056 \pm 0.03$	0.0

Interpretation of the results

- Nominal fit on the 8 independent samples provides S's and C's + a likelihood value
 - → How significant is the observed T violation?

■ Variation of
$$-2\Delta \ln L$$
 gives the T violation significance: $\Delta \chi^2 = -2(\ln L_{NoTRV} - \ln L)$ for 8 degrees of freedom

$$\begin{cases} \Delta S_T^{\pm} = \Delta C_T^{\pm} = 0 \\ \Delta S_{CP}^{\pm} = \Delta S_{CPT}^{\pm} \\ \Delta C_{CP}^{\pm} = \Delta C_{CPT}^{\pm} \end{cases}$$

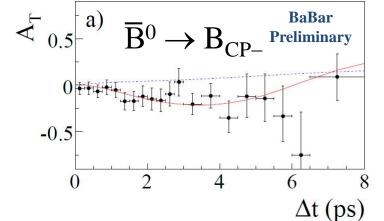
$$\Delta C_{CP}^{\pm} = \Delta C_{CPT}^{\pm}$$

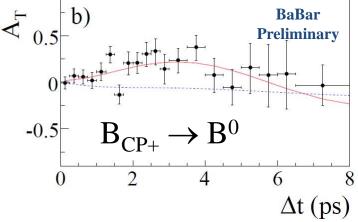
- Compute T-violation significance
 - CP and CPT significances estimated the same way

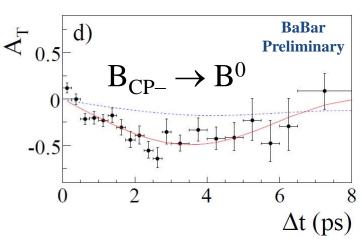
	(syst. included)
Time reversal violation	14σ
CP violation	16.6σ
CPT violation	0.33σ

- Results
 - TRV observed at the 14σ level
 - → First direct observation (no experimental connection with CP or CPT)
 - Consistent with CP violation measurement assuming CPT invariance

T Asymmetries

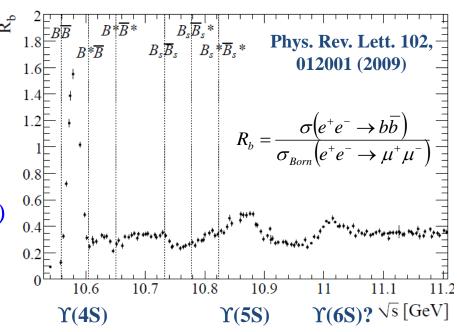

• Asymmetries for the 4 transitions studied (assuming perfect reconstruction):


$$\begin{aligned} & \overline{B}^0 \to B_{CP^+} \\ & \overline{B}^0 \to B_{CP^-} \\ & B_{CP^+} \to B^0 \\ & B_{CP^-} \to B^0 \end{aligned}$$


$$A_{T}(\Delta t) = \frac{\Delta C_{T}^{+}}{2}\cos(\Delta m \Delta t) + \frac{\Delta S_{T}^{+}}{2}\sin(\Delta m \Delta t)$$

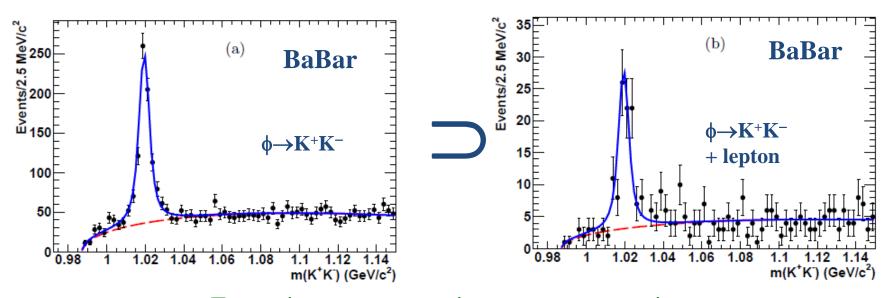
• Nominal fit → TRV

Fit w/o TRV



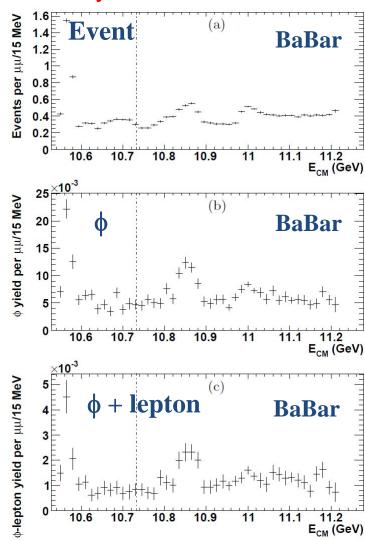
B_s semileptonic branching fraction

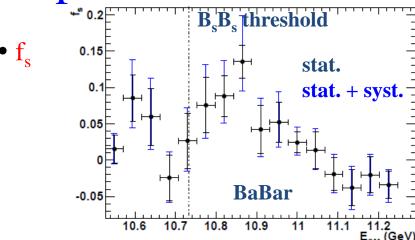
Phys. Rev. D 85, 011101(R) (2012)


Motivation & method

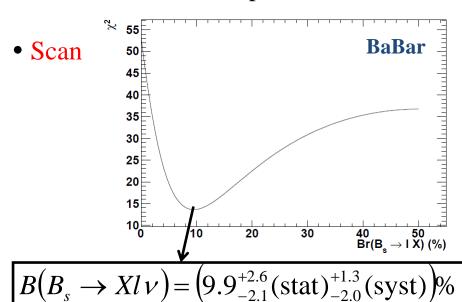
- Use inclusive ϕ rate and ϕ rate in correlation with high momentum lepton to measure
 - \blacksquare B_s production rate vs. energy in scan region: \mathbf{f}_{s}
 - \rightarrow Only known at the $\Upsilon(5S)$ peak (CLEO, 2007) or in the onpeak region (Belle, 2007)
- $f_s = \frac{N_{B_s}}{N_{B_s} + N_{R^0} + N_{R^+}}$
- B_s semileptonic branching ratio: $Br(B_s \to Xlv)$
 - \rightarrow Preliminary result from Belle (2010)
- ϕ (+ lepton) yields from B_s large compared to $B_{u/d}$ decays (dominant production)
 - CKM-favored $B_s \rightarrow D_s$ transition
- Use BaBar data from the final energy scan
- Compute 3 quantities at each energy:
 - B hadron event rate = $f_1(R_b, f_s, ...)$
 - Inclusive ϕ rate $= f_2(R_b, f_s, ...)$
 - Inclusive ϕ +lepton rate = $f_3(R_b, f_s, Br, ...)$
 - → Other quantities known or computed
 - \rightarrow Extract f_s from the first two equations
 - → Estimate Br from a likelihood scan

Analysis key points


- Continuum contribution subtracted using data below the BB threshold
- $B_{u/d}$ contributions measured in $\Upsilon(4S)$ data
- f_s extracted at each energy point
- χ^2 fit performed to the measured yields to extract the semileptonic branching ratio
- Dominant systematics: inclusive D_s yield per B_s


For a given representative energy scan point

Results and interpretation

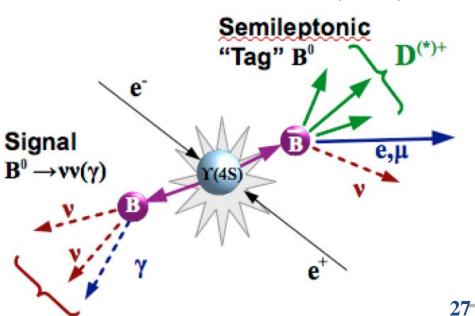

• Relative yields

→ Consistent with theoretical predictions

- → Consistent with theory predictions
 - B_s production peaks near $\Upsilon(5S)$
 - Off-resonance production small

$$B \rightarrow \nu \bar{\nu}(\gamma)$$
 'invisible'

arXiv:1206.2543 [hep-ex] Submitted to PRD-RC

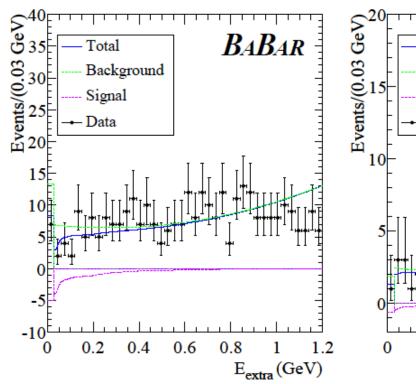

Motivation & analysis key points

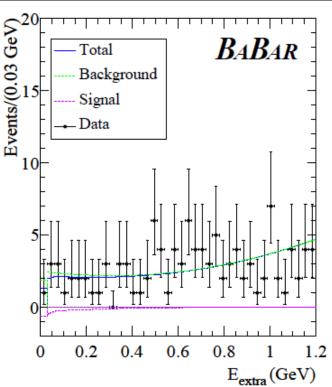
- Look for B decays producing neutrinos and potentially some exotic particles
- SM: $B^0 \rightarrow \nu \overline{\nu}$ suppressed by $(m_{\nu}/m_B)^2$ BF($B^0 \rightarrow \nu \overline{\nu} \gamma$) ~ 10^{-9}

<< experimental reach

- In some SUSY models, BRs can be as high as 10^{-7} – 10^{-6}
 - Neutrino + neutralino production in the final state
 - → Any signal would be a clear sign of new physics

- Semileptonic reconstruction of the B_{tag}
- Require no additional charged tracks on the B_{sig} side
- Select events with limited energy in the calorimeter on the signal side
 - \rightarrow Low 'extra energy': E_{extra}


Results

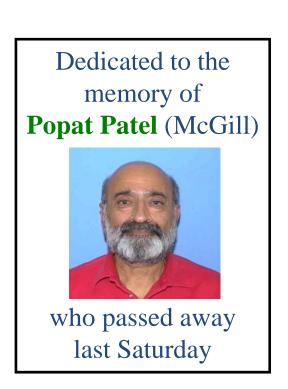

• No signal found

Upper limits

1	$B^0 \rightarrow invisible$	$B^0 \rightarrow invisible + \gamma$
Fitted yield	$-22 \pm 9 \pm 16$	$-3.1 \pm 5.2 \pm 7.0$
Signal efficiency	0.018%	0.016%
Br upper limit (90% C.L.)	2.4×10^{-5}	1.7×10^{-5}
Previous BaBar upper limit (based on ~20% of the full dataset)	22×10^{-5}	4.7×10^{-5}

• Fit results

Summary


- Significant excess of events in $B \to D^{(*)}\tau\nu$ decays
 - \rightarrow 3.4 σ above the Standard Model
 - Cannot be explained by a 2DHM Higgs of Type II
 - → Completely ruled out
 - Waiting for a confirmation by Belle larger dataset + improved tagger
- First direct observation (14 σ) of Time-reversal violation
- First measurement of the B_s semileptonic branching fraction

$$B(B_s \to X l \nu) = (9.9^{+2.6}_{-2.1} (\text{stat})^{+1.3}_{-2.0} (\text{syst}))\%$$

- plus the B_s production fraction
- Significantly improved limits on B \rightarrow invisible (+ γ)

Br(B
$$\rightarrow$$
 invisible) $< 2.4 \times 10^{-5}$
Br(B \rightarrow invisible $+ \gamma$) $< 1.7 \times 10^{-5}$ @ 90% C.L.

- Only a fraction of recent BaBar results
 - Analysis ongoing for a variety of processes
 - \rightarrow To be continued...

