

Bottomonium(-like) spectroscopy at Belle

Umberto Tamponi tamponi@to.infn.it

INFN, Sezione di Torino Universita' di Torino

International Conference on new Frontiers Physics Kolymbari, June 12th, 2012

The Belle experiment

17°

3.5 GeV

 e^+

PID

Outline

bb bound state

- → spectroscopy
- → radial excitations, singlets, triplets...

Strong interacting system

→ hadronic transitions

b quark is heavy

- → (almost) non relativistic system
- → Large range of scales in the same system

Lots of models

- → Non relativistic QCD
- → Potential model
- \rightarrow QCD multipole expansion ...
- New states
- II Transitions
- III Bottomonium decays

Part I

New states from Y(5S)

U.Tamponi, Bottomonium(-like) states at Belle ICFP2012

$h_{b}(1,2P)$ from Y(5S)

PRL108,032001

 $h_{h}(nP)$ is the singlet partner of $\chi(nP)$

Hyperfine Splitting: M(singlet) – M(triplet)

 $\Delta M_{HF}(nP) = M(h_{b}(nP)) - M_{AVG}(\chi(nP))$

$$M_{AVG}(\chi(1P)) = (M\chi_{b0} + 3 M\chi_{b1} + 5 M\chi_{b2}) / 9$$

Spin-averaged mass

$$\begin{split} \Delta M_{\rm HF}(1P) &= \textbf{0.8} \pm \textbf{1.1} \ \text{MeV/c}^2 & \text{Precise measurement} \\ & \textbf{Study} \\ \Delta M_{\rm HF}(2P) &= \textbf{0.5} \pm \textbf{1.2} \ \text{MeV/c}^2 & \text{of spin effects in QCD} \end{split}$$

PRL108,122001

U.Tamponi, Bottomonium(-like) states at Belle ICFP2012

U.Tamponi, Bottomonium(-like) states at Belle ICFP2012

Mass and Γ measured in 5 different final states agree

Angular analysis suggests $J^P = 1^+$

$$Z_{b}(10610)$$

 $M = 10608 \pm 2.0 \text{ MeV}$
 $\Gamma = 15.6 \pm 2.5 \text{ MeV}$
 $Z_{b}(10650)$
 $M = 10653 \pm 1.5 \text{ MeV}$
 $\Gamma = 14.4 \pm 3.2 \text{ MeV}$

The Di Pion transitions from the Y(5S) proceed via the intermediate charged state Z_{h}

The transition does not imply spin flip

Masses are close to B*B and B*B* theresholds Molecules?

The Y(5S) is an unexpected source of h_b

h_h (1P,2P) $\rightarrow \gamma \eta_h$ (1S,2S)

system

Entries/ (0.005 GeV)

arXiv:1205.6351

 $h_{h}(1,2P)$ is predicted to have large BF for radiative decays to η_{h}

$$\begin{aligned} \mathsf{BF}[\mathsf{h}_{\mathsf{b}}(1\mathsf{P}) &\to & \gamma \,\eta_{\mathsf{b}}(1\mathsf{S})] &= \mathbf{41\%} \\ \mathsf{BF}[\mathsf{h}_{\mathsf{b}}(2\mathsf{P}) &\to & \gamma \,\eta_{\mathsf{b}}(1\mathsf{S})] &= \mathbf{13\%} \\ \mathsf{BF}[\mathsf{h}_{\mathsf{b}}(2\mathsf{P}) &\to & \gamma \,\eta_{\mathsf{b}}(2\mathsf{S})] &= \mathbf{19\%} \end{aligned}$$

Means

U.Tamponi, Bottomonium(-like) states at Belle ICFP2012

Search for the η_{b} (1,2S)

$$\begin{split} &\mathsf{M}[\eta_{\mathsf{b}}(1S)] = (9402.4 \pm 1.5 \pm 1.8) \text{MeV} \\ &\Gamma[\eta_{\mathsf{b}}(1S)] = (10.8 + 4.0 - 3.7 + 4.5 - 2.0) \text{MeV} \\ &\mathsf{B}[\mathsf{h}_{\mathsf{b}}(1S) \to \gamma \ \eta_{\mathsf{b}}(1S)] = 49.2 \ \pm 5.7 \ \% \\ &\mathsf{B}[\mathsf{h}_{\mathsf{b}}(1S) \to \gamma \ \eta_{\mathsf{b}}(2S)] = 22.3 \ \pm 3.8 \ \% \end{split}$$

$$\begin{split} \textbf{M}[\eta_{b}(\textbf{2S})] &= (\textbf{9999.0} \pm 3.5 + 2.8 - 1.9) \text{MeV} \\ \Gamma[\eta_{b}(\textbf{2S})] &< \textbf{24} \text{ MeV} \\ \textbf{B}[\textbf{h}_{b}(\textbf{2S}) \rightarrow \gamma \ \eta_{b}(\textbf{2S})] &= \textbf{47.1} \quad \pm 10.5 \ \% \end{split}$$

Hyperfine splitting in 1S and 2S

BELLE

arXiv:1205.6351

1S hyperfine splitting was measured by CLEO and BaBar to be higher than theoretical predictions. $\Delta M_{HF}(\eta_{b}) = M(\eta_{b}) - M(Y(1S))$

Belle measured a lower value with increased precision:

 $\Delta M_{HF}(1S) = 57.9 \pm 2.3$ MeV

First 2S measurement: $\Delta M_{HF}(2S) = 23.4^{+4.0}_{-4.5}$ MeV

Agreement with theory

Part II

Transitions with η meson

$Y(nS) \rightarrow \eta Y(mS)$

Y(nS)	\rightarrow	ππ	E1E1 transition Y(mS)
		No Spin Flip	
			E1M2 transition
r(n5)	\rightarrow	η, π°	r (m5) <u>Spin Flip</u>

The *n* transition requires a spin flip

MGE

 Φ_i

QCD multipole expansion: spin flip amplitude proportional to $(m_{h})^{-2}$ Kuang Front. Phys. China 1, 19 (2006)

The η transition is predicted to be suppressed with respect to the di pion one

 Φ_f $BF(2S \rightarrow 1S) = 2.1 \times 10^{-4}$ [CLEO], 2.39 x 10⁻⁴ [BaBar] ~8 x 10⁻⁴ [Theory] $BF(3S \rightarrow 1S) < 1 \times 10^{-4}$ [BaBar], ~6 x 10⁻⁴ [Theory] $BF(4S \rightarrow 1S) = 1.96 \times 10^{-4}$ [BaBar] Orders of magnitude higher (2.5x $\pi\pi$ transition)

 $Y(2S) \rightarrow \eta, \pi^0 Y(1S)$

 $B(Y(2S) \rightarrow \pi Y(1S)) < 0.43 \times 10^{-4} (90\% CL)$ Preliminary

Normalization sample Y(2S) $\rightarrow \pi^+\pi^-$ Y(1S) 17

U.Tamponi, Bottomonium(-like) states at Belle ICFP2012

Part III

Bottomonium decays

Y(1,2S)→ light hadrons

 $Q_{c} = \frac{B[\psi' \rightarrow hadrons]}{B[J/\psi \rightarrow hadrons]} = \frac{B[\psi' \rightarrow e^{+}e^{-}]}{B[J/\psi \rightarrow e^{+}e^{-}]} = 12\%$

Vector-Tensor

Pseudoscalar

Axial-

arXiv:1205.1246v1

 $\phi f'_2$

 ωf_2

 $K^{*0}\bar{K}_{2}^{*0}$

 $K_1(1270)^+K^ K_1(1400)^+K^-$

 $b_1(1235)^+\pi^-$

12% rule in charmonium: violated in some VT and VP final states ($\rho\pi$ puzzle)

 $\mathbf{Q}_{\gamma} = \frac{\mathbf{B}[\mathbf{Y}(2\mathbf{S}) \rightarrow \text{hadrons}]}{\mathbf{B}[\mathbf{Y}(1\mathbf{S}) \rightarrow \text{hadrons}]} = \frac{\mathbf{B}[\mathbf{Y}(2\mathbf{S}) \rightarrow \mathbf{e}^{+}\mathbf{e}^{-}]}{\mathbf{B}[\mathbf{Y}(1\mathbf{S}) \rightarrow \mathbf{e}^{+}\mathbf{e}^{-}]} = 77\%$ From non-relativistic QCD. Expected to be precise but to be tested

- \rightarrow Y(2S) and Y(1S) samples
- → Complete event reconstruction
 - 10 (x2) channels, 5 with observation

Y(1,2S)→ 3 bodies (observations)

U.Tamponi, Bottomonium(-like) states at Belle ICFP2012

Y(1,2S)→ 2 bodies (observations)

U.Tamponi, Bottomonium(-like) states at Belle ICFP2012

$Y(1,2S) \rightarrow \gamma$ charmonium

³P_J

PRD 82(2010),051504R

KT Chao et al, (hep-ph/0701009) provides a very large set of NRQCD predictions on many processes

Theoretical prediction (x 10⁻⁶):

Similar rates are expected for Y(2S)

Upper limits on Y(1,2S) $\rightarrow \gamma$ charmonium $\frac{2}{3}$

PRD 82(2010),051504R

Charmonium X 10⁻⁶

Channel	90% CL U.L.
$Y(2S) \rightarrow \gamma \chi_{c0}$	650
$\textbf{Y(2S)} \rightarrow \textbf{YX}_{c0}$	23
$Y(2S) \rightarrow \gamma \chi_{c0}$	7.6
$Y(2S) \rightarrow \gamma \eta_c$	57

Channel	90% CL U.L.
$Y(2S) \rightarrow \gamma \chi_{c0}$	650
$\textbf{Y(2S)} \rightarrow \textbf{YX}_{c0}$	23
$Y(2S) \rightarrow \gamma \chi_{c0}$	7.6
$Y(2S) \rightarrow \gamma \eta_c$	57

Exotic charmonium X 10⁻⁶

Channel	90% CL U.L.						
$Y(1S) \rightarrow \gamma \ X3872 \ \rightarrow \ \gamma \ \pi^{\scriptscriptstyle +}\pi^{\scriptscriptstyle -} \ J/\psi$	1.6						
$Y(1S) \rightarrow \gamma X3872 \rightarrow \gamma \pi^{*}\pi^{-}\pi^{0} J/\psi$	2.8						
$Y(1S) \rightarrow \gamma \ X3915 \rightarrow \gamma \ \omega J/\psi$	3.0						
$Y(1S) \rightarrow \gamma Y4140 \rightarrow \gamma \phi J/\psi$	2.2						
No signal observed.							
UL in agreement with theor	. y						

Channel	90% CL U.L.
$Y(2S) \rightarrow \gamma \ X3872 \ \rightarrow \ \gamma \ \pi^{*}\pi^{-} \ J/\psi$	0.8
$Y(2S) \rightarrow \gamma X3872 \rightarrow \gamma \pi^{*}\pi^{-}\pi^{0} J/\psi$	2.4
$Y(2S) \rightarrow \gamma X3915 \rightarrow \gamma \omega J/\psi$	2.8
$Y(2S) \rightarrow \gamma \ Y4140 \rightarrow \gamma \ \phi J/\psi$	1.2
$Y(2S) \rightarrow \gamma X4350 \rightarrow \gamma \phi J/\psi$	1.3

U.Tamponi, Bottomonium(-like) states at Belle ICFP2012

$\chi_{b}(1P) \rightarrow double charmonium New!$

 χ_{bJ}

J/ψ

arXiv:1203.0368

Chance to compare different predictions:

Light Cone formalism (LC): Phys. Rev. D 80, 094008 (2009) Potential QCD (pQCD) : Phys. Rev. D 72, 094018 (2005) Non relativistic QCD (NRQCD): Phys. Rev. D 84,094031(2011

11)
$$J/\psi$$

 $\chi_{bJ} \rightarrow J/\psi J/\psi$
 $\chi_{bJ} \rightarrow \psi'\psi'$
 $\chi_{bJ} \rightarrow J/\psi \psi'$

Y(2S)

Missing mass technique: clusters in $MM(\gamma J/\psi)$ versus $E(\gamma)$ with:

```
 \begin{array}{l} J/\psi \rightarrow \! \mu^{\scriptscriptstyle +} \! \mu^{\scriptscriptstyle -} \!, \, e^{\scriptscriptstyle +} e^{\scriptscriptstyle -} \\ \psi^{\scriptscriptstyle -} \rightarrow \! \pi^{\scriptscriptstyle +} \! \pi^{\scriptscriptstyle -} \, J/\psi \!, \ \mu^{\scriptscriptstyle +} \! \mu^{\scriptscriptstyle -} \!, \, e^{\scriptscriptstyle +} e^{\scriptscriptstyle -} \end{array} \end{array}
```

$\chi_{b}(1P) \rightarrow double charmonium New!$

Channel	n^{up}	$\varepsilon(\%)$	$\sigma_{\rm sys}(\%)$	\mathcal{B}_R
$\chi_{b0} \to J/\psi J/\psi$	21	5.8	16	7.1×10^{-5}
$\chi_{b1} \rightarrow J/\psi J/\psi$	13	6.3	30	2.7×10^{-5}
$\chi_{b2} \to J/\psi J/\psi$	22	5.9	27	4.5×10^{-5}
$\chi_{b0} \rightarrow J/\psi \psi'$	20	3.4	17	1.2×10^{-4}
$\chi_{b1} \to J/\psi \psi'$	5.8	3.8	15	1.7×10^{-5}
$\chi_{b2} \rightarrow J/\psi \psi'$	17	3.5	16	4.9×10^{-5}
$\chi_{b0} \to \psi' \psi'$	3.0	2.1	20	3.1×10^{-5}
$\chi_{b1} \to \psi' \psi'$	12	2.2	17	6.2×10^{-5}
$\chi_{b2} \to \psi' \psi'$	3.3	2.1	12	1.6×10^{-5}

A set of **Preliminary Upper Limits**

- Below (~70% discrepancy) the Light Cone formalism and potential QCD predictions
- In agreement with NRQCD predictions

arXiv:1203.0368

U.Tamponi, Bottomonium(-like) states at Belle ICFP2012

Summary

~ 1.5 Year of results from Y(1,2,5 S)

 $\begin{array}{l} Y(1,2S) \rightarrow \mbox{ light hadrons (first observation!)} \\ Y(1,2S) \rightarrow \gamma \mbox{ charmonium} \\ \chi(1P) \rightarrow \mbox{ double charmonium} \end{array} \quad \begin{array}{l} NRQCD \mbox{ seems to be a good} \\ model \end{array}$

 $Y(nS) \rightarrow \eta Y(mS)$: a puzzle still to be solved

Backup

$\pi^+\pi^-$ transitions @ Y(5S)

$\pi^+\pi^-$ transitions @ Y(5S)

PRD82,091106R(2010)

PRL100,112001(2008)	Γ(MeV)
$\Upsilon(5S) \to \Upsilon(1S)\pi^+\pi^-$	$0.59 \pm 0.04 \pm 0.09$
$\Upsilon(5S) \to \Upsilon(2S)\pi^+\pi^-$	$0.85 \pm 0.07 \pm 0.16$
$\Upsilon(5S) \to \Upsilon(3S)\pi^+\pi^-$	$0.52^{+0.20}_{-0.17} \pm 0.10$
$\Upsilon(2S) \to \Upsilon(1S)\pi^+\pi^-$	0.0060
$\Upsilon(3S) \to \Upsilon(1S)\pi^+\pi^-$	0.0009
$\Upsilon(4S) \to \Upsilon(1S)\pi^+\pi^-$	0.0019

Simonov JETP Lett 87,147(2008)

Rescattering Y(5S) \rightarrow BB $\pi\pi \rightarrow$ Y(nS)?

Phys.Rev.D 84 091101(R)

arxiv:1204.4205

	N	$\Delta M_{\rm hf}~({ m MeV})$	$M ({\rm MeV})$	$\chi^2/d.o.f.$	signif. (σ)	$\mathcal{B}_1 imes \mathcal{B}_2 imes 10^6$
$\eta_b(2S)$	$11.4^{+4.3}_{-3.5}$	$48.7 \pm 2.3 \pm 2.1$	$9974.6 \pm 2.3 \pm 2.1$	91.8/103	4.9	$46.2^{+29.7}_{-14.2} \pm 10.6$
$\eta_b(1S)$	$10.3^{+4.9}_{-4.1}$	$67.1 \pm 3.4 \pm 2.3$	$9393.2 \pm 3.4 \pm 2.3$	114.6/107	3.1	$30.1^{+33.5}_{-7.4} \pm 7.5$

Z_b in Y(nS) final state

Z_b in Y(1S) final state

 $M(\Upsilon(1S)\pi^+)$ and $M(\Upsilon(1S)\pi^-)$ projections:

Z_b in Y(2S) final state

 $M(\Upsilon(2S)\pi^+)$ and $M(\Upsilon(2S)\pi^-)$ projections:

Z_b in Y(3S) final state

$M(\Upsilon(3S)\pi^+)$ and $M(\Upsilon(3S)\pi^-)$ projections:

Z_b angular analysis

- $\theta_i = \angle (\pi_i, e^+)$ $\phi = \angle [plane(\pi_1, e^+), plane(\pi_1, \pi_2)]$
- $e^+ \rightarrow$ incoming positron beam
 - Color coding: J^P= 1⁺ 1⁻ 2⁺ 2⁻

Example : $\Upsilon(5S) \rightarrow Z_b^{+}(10610) \ \pi^{-} \rightarrow [\Upsilon(2S)\pi^{+}] \ \pi^{-}$

Probabilities at which different J^P hypotheses are disfavored compared to 1⁺

τP		$Z_b(10610)$		$Z_b(10650)$					
J-	$\Upsilon(2S)\pi^+\pi^-$	$\Upsilon(3S)\pi^+\pi^-$	$h_b(1P)\pi^+\pi^-$	$\Upsilon(2S)\pi^+\pi^-$	$\Upsilon(3S)\pi^+\pi^-$	$h_b(1P)\pi^+\pi^-$			
1-	3.6σ	0.3σ	0.3σ	3.7σ	2.6σ	2.7 σ			
2^{+}	4.3σ	3.5σ	4.2 -	4.4σ	2.7σ	91-			
2^{-}	2.7σ	2.8σ	4.3σ	2.9σ	2.6σ	2.1σ			

Y(2S)→ η **Y(1S)**

- $\Upsilon(2S) \rightarrow \eta \Upsilon(1S)$: $-\mathcal{B}_{theo} \approx 8.0 \times 10^{-4}$. $-\mathcal{B}_{CLEO} = (2.1^{+0.7}_{-0.6} \pm 0.3) \times 10^{-4}$ (5.3 σ with 1.3 fb⁻¹, PRL101,192001).
- $\Upsilon(3S) \to \eta \Upsilon(1S)$: - $\mathcal{B}_{theo} \approx 6.5 \times 10^{-4}$. - $\mathcal{B}_{CLEO} < 1.8 \times 10^{-4}$ (PRL101,192001).
- $\Upsilon(4S) \rightarrow \eta \Upsilon(1S)$: - $\mathcal{B}_{BaBar} \approx 2.5 \times \mathcal{B}(\Upsilon(4S) \rightarrow \Upsilon(1S)\pi^+\pi^-)$, PRD78,112002.
- Event Reconstruction: $\eta \to \gamma \gamma / \pi^+ \pi^- \pi^0$, and $\Upsilon(1S) \to e^+ e^- / \mu^+ \mu^-$.
- Backgrounds:
 - $\Upsilon(2S) \rightarrow \Upsilon(1S)\pi^0\pi^0$ ($\mathcal{B} = 9.0\%$)
 - $\Upsilon(2S) \rightarrow \gamma \chi_{bJ} \rightarrow \gamma \gamma \Upsilon(1S)$ ($\mathcal{B} = 4.0\%$)
 - Radiative Bhabha scattering

Y(2S)→ η **Y(1S)**

$Y(2S) \rightarrow \eta Y(1S)$

Measured $Y(2S) \rightarrow \eta Y(1S)$ BF in different final states.

$Y(2S) \rightarrow \eta Y(1S) @ BaBar and CLEO$

$Y(1,2S) \rightarrow light hadrons$

arXiv:1205.1246v1

$$Q_{c} = \frac{B[\psi' \rightarrow hadrons]}{B[J/\psi \rightarrow hadrons]} = \frac{B[\psi' \rightarrow e^{+}e^{-}]}{B[J/\psi \rightarrow e^{+}e^{-}]} = 12\%$$

$$Q_{Y} = \frac{B[Y(2S) \rightarrow hadrons]}{B[Y(1S) \rightarrow hadrons]} = \frac{B[Y(2S) \rightarrow e^{+}e^{-}]}{B[Y(1S) \rightarrow e^{+}e^{-}]} = 77\%$$

Channel	$\Upsilon(1S)$					$\Upsilon(2S)$						
	N^{sig}	$N_{ m sig}^{ m UP}$	Σ	B	$\mathcal{B}^{\mathrm{UP}}$	N^{sig}	$N_{ m sig}^{ m UP}$	Σ	B	$\mathcal{B}^{\mathrm{UP}}$	Q_{Υ}	$Q_{\Upsilon}^{\mathrm{UP}}$
$\phi K^+ K^-$	56.3 ± 9.0		8.6	$2.36 \pm 0.38 \pm 0.29$		69 ± 36		6.5	$1.86 \pm 0.96 \pm 0.21$		$0.79 \pm 0.54 \pm 0.13$	
$\omega \pi^+ \pi^-$	63.6 ± 9.5		8.5	$4.46 \pm 0.67 \pm 0.72$		29 ± 12	51	2.5	$1.32 \pm 0.54 \pm 0.45$	2.58	$0.30 \pm 0.13 \pm 0.11$	0.55
$K^{*0}K^-\pi^+$	173 ± 20		11	$4.42 \pm 0.50 \pm 0.58$		135 ± 23		6.4	$2.32 \pm 0.40 \pm 0.54$		$0.52 \pm 0.11 \pm 0.14$	
$\phi f'_2$	6.9 ± 3.9	15	2.1	$0.64 \pm 0.37 \pm 0.14$	1.63	8.3 ± 6.0	18	1.6	$0.50 \pm 0.36 \pm 0.19$	1.33	$0.77 \pm 0.70 \pm 0.33$	2.54
ωf_2	5.2 ± 4.0	13	1.5	$0.57 \pm 0.44 \pm 0.13$	1.79	-0.4 ± 3.3	6.1		$-0.03 \pm 0.24 \pm 0.01$	0.57	$-0.06 \pm 0.42 \pm 0.02$	1.22
$ ho a_2$	29 ± 11	49	2.7	$1.15 \pm 0.47 \pm 0.18$	2.24	10 ± 11	30	0.9	$0.27 \pm 0.28 \pm 0.14$	0.88	$0.23 \pm 0.26 \pm 0.12$	0.82
$K^{*0} \bar{K}_{2}^{*0}$	42.2 ± 9.5		5.4	$3.02 \pm 0.68 \pm 0.34$		32 ± 11		3.3	$1.53 \pm 0.52 \pm 0.19$		$0.50 \pm 0.21 \pm 0.07$	
$K_1(1270)^+K^-$	3.7 ± 4.9	13	0.8	$0.54 \pm 0.72 \pm 0.21$	2.41	11.0 ± 4.4	26	1.2	$1.06 \pm 0.42 \pm 0.32$	3.22	$1.96 \pm 2.71 \pm 0.84$	4.73
$K_1(1400)^+K^-$	23.8 ± 8.2		3.3	$1.02 \pm 0.35 \pm 0.22$		9.2 ± 8.2	24	0.5	$0.26 \pm 0.23 \pm 0.09$	0.83	$0.26 \pm 0.25 \pm 0.10$	0.77
$b_1(1235)^+\pi^-$	14.4 ± 6.9	28	2.4	$0.47 \pm 0.22 \pm 0.13$	1.25	1.2 ± 3.5	13	0.2	$0.02 \pm 0.07 \pm 0.01$	0.40	$0.05 \pm 0.16 \pm 0.03$	0.35