Time evolution of the sQGP with new solutions of relativistic hydrodynamics

Máté Csanád Eötvös University, Budapest

1st International Conference on New Frontiers in Physics, Kolymbari, Greece

June 11, 2012

Outline

- 2 Constant EoS hydro compared to data
- 3 Solutions with a QCD EoS
- ④ Summary

Introduction

- Collective dynamics of the sQGP is observed at RHIC
 - Thermal spectra, momentum anizotropy v_2 , scaling correlation radii
- Hydrodynamics: applicable in high energy A+A and p+p! PHENIX Collaboration, Nucl. Phys. A **757**, 184 (2005), nucl-ex/0410003
- Equations of hydro: highly non-linear, not straightforward to solve
- Exact, analytic solutions: important to determine initial and final state
- Non-relativistic hydro: many solutions, applicable, but inconsistent!
- Relativistic ideal hydro: formulated by Landau
 - Famous 1+1D solutions: Landau, Izv. Acad. Nauk SSSR 17, 51 (1953)

Hwa, Phys. Rev. D 10, 2260 (1974)

Bjorken, Phys. Rev. D 27, 40 (1983)

- Revival of interest, many new solutions, mostly 1+1D, few 1+3D
- Using constant Equation of State!
- Time evolution of sQGP? Temperature dependent EoS?

Hydrodynamics

Equations of hydrodynamics with a conserved charge

- There may be a conserved charge or number n (chem. pot. $\neq 0$)
- Basic eqs: continuity and energy-mom. conservation

$$\partial_{\mu}(nu^{\mu}) = 0 \text{ and } \partial_{\nu}T^{\mu\nu} = 0$$
 (1)

- Energy-momentum tensor in perfect fluid: $T^{\mu\nu} = (\epsilon + p)u^{\mu}u^{\nu} pg^{\mu\nu}$
- Equation on $\mathcal{T}^{\mu
 u}$ an be split into energy & momentum conservation

$$(\epsilon + p)\partial_{\nu}u^{\nu} + u^{\nu}\partial_{\nu}\epsilon = 0$$
⁽²⁾

$$(\epsilon + p)u^{\nu}\partial_{\nu}u^{\mu} = (g^{\mu\nu} - u^{\mu}u^{\nu})\partial_{\nu}p$$
(3)

- Equation of State (if $\kappa = \text{const.}$, $c_s^2 = 1/\kappa$): $\epsilon = \kappa p$
- This is a full set of equations for u^{μ} , n and p
- Introduce temperature with p = nT, temperature eq. from here:

$$T\partial_{\mu}u^{\mu} + \kappa u^{\mu}\partial_{\mu}T = 0 \tag{4}$$

• Write up solutions for u^{μ} , *n* and *T* instead!

Hydrodynamics

Equations of hydrodynamics without conserved charges

- Energy-momentum conservation is the same
- Let us introduce entropy density σ
- Fundamental thermodynamical relations without a conserved charge

$$\varepsilon + p = T\sigma \Rightarrow d\varepsilon = Td\sigma \text{ and } dp = \sigma dT$$
 (5)

• The same continuity equation for σ follows from here:

$$\partial_{\nu}(\sigma u^{\nu}) = 0, \tag{6}$$

• EoS can be used the same manner here, but different p - T relation!

$$\epsilon = \kappa p \text{ and } p = T\sigma/(\kappa+1)$$
 (7)

• If $\kappa = \text{const.}$, we get the same equation on the temperature as with *n*:

$$T\partial_{\mu}u^{\mu} + \kappa u^{\mu}\partial_{\mu}T = 0.$$
(8)

• All $\kappa = \text{const.}$ solutions valid for both $\{u^{\mu}, n, T\}$ and $\{u^{\mu}, \sigma, T\}$.

Outline

- 2 Constant EoS hydro compared to data
- 3 Solutions with a QCD EoS

A known ellipsoidal solution with constant κ

First exact, analytic and truly 3D relativistic solution
 Csörgő, Csernai, Hama et al., Heavy Ion Phys. A21, 73 (2004), nucl-th/0306004

$$u^{\mu} = rac{x^{\mu}}{ au}, \quad ext{with } au = \sqrt{x_{\mu}x^{\mu}}, ag{9}$$

$$n = n_0 \frac{V_0}{V} \nu(s), \quad T = T_0 \left(\frac{V_0}{V}\right)^{1/\kappa} \nu(s)^{-1},$$
 (10)

• $\nu(s)$ is an arbitrary function and

$$s = rac{r_x^2}{X^2} + rac{r_y^2}{Y^2} + rac{r_z^2}{Z^2}, \quad V = \tau^3,$$
 (11)

- X, Y, Z: principal axes of expanding ellipsoid, $X(t) = \dot{X}_0 t$ etc.
- This solution is non-accelerating, ie. obeys $u^{\nu}\partial_{\nu}u^{\mu} = 0$.
- It can be written up for σ (i.e. no conserved n) as well.
- Constant κ!

Hadronic observables compared to data

- How does the $\kappa = \text{const.}$ solution compare to data?
- The hadronic source function is given from the solution:

$$S(x,p)d^{4}x = \mathcal{N}\frac{p_{\mu} d^{3}\Sigma^{\mu}(x)H(\tau)d\tau}{n(x)\exp{(p_{\mu}u^{\mu}(x)/T(x))} - 1}$$
(12)

 Compared to PHENIX data successfully Csanád, Vargyas, Eur. Phys. J. A 44, 473 (2010), arXiv:0909.4842 Data: PHENIX Coll., PRC69034909(2004), PRL91182301(2003), PRL93152302(2004)

Máté Csanád, Eötvös University

Time evolution of the sQGP matter?

- Hadronic data describe the final state
- Different EoS lead to different initial states!
 Csanád, Vargyas, Eur. Phys. J. A 44, 473 (2010), arXiv:0909.4842
 Csanád, Nagy, Csörgő, Eur. Phys. J. ST, 19 (2008), arXiv:0710.0327

Direct photon observables compared to data

- Photons are created throughout the evolution
- Their distribution reveals information about the EoS!
- The source function of photon creation is assumed as:

$$S(x,p)d^{4}x = \mathcal{N}\frac{p_{\mu}u^{\mu}}{\exp\left(p_{\mu}u^{\mu}(x)/T(x)\right) - 1} d^{4}x$$
(13)

- ullet Integrated over energy (i.e. four-momentum): emission $\propto \mathcal{T}^4$
 - Analyzed systematic change with T power, based on

$$rate(A + B \to X) = n_A n_B \langle v \sigma_{A+B \to X} \rangle \propto T^6$$
(14)

• Transverse mom. distribution, elliptic flow and HBT radii calculable Csanád, Májer, Central Eur. J. Phys. **10** (2012), arXiv:1101.1279

Direct photon observables compared to data

- Compared to PHENIX data successfully
- Predicted photon HBT radii

Csanád, Májer, Central Eur. J. Phys. 10 (2012), arXiv:1101.1279

Data: PHENIX Collaboration, arXiv:0804.4168 and arxiv:1105.4126

- Result for the average EoS: $c_s = 0.36 \pm 0.02_{stat} \pm 0.04_{syst}$
- Time interval: $\tau_{\rm ini} \approx 0.7$ fm/c, $\tau_{\rm final} = 7.7$ fm/c (from hadron fits)

Time evolution result with $\kappa = \text{const.}$

- The $c_s = 0.36$ result means $\kappa = 7.7$
- Corresponds to to $T_{\rm ini}$ of 507 \pm 12_{stat} \pm 90_{syst} MeV at 0.7 fm/c

Csanád, Vargyas, Eur. Phys. J. A 44, 473 (2010), arXiv:0909.4842

Outline

Hydrodynamics

- 2 Constant EoS hydro compared to data
- Solutions with a QCD EoS
- ④ Summary

Solutions with arbitrary EoS?

- Constant EoS may not be realistic (temperature may change rapidly)
- If $\kappa(T)$, new solutions have to be found
- With a conserved charge (and $\epsilon = \kappa nT$), the temperature equation is:

$$T\partial_{\mu}u^{\mu} + \frac{d(\kappa T)}{dT}u^{\mu}\partial_{\mu}T = 0.$$
(15)

- Works only if $d(\kappa T)/dT > 0!$
- In case of no conserved charges (and $\epsilon = \kappa T \sigma / (\kappa + 1))$:

$$T\partial_{\mu}u^{\mu} + \left[\kappa + \frac{T}{\kappa+1}\frac{d\kappa}{dT}\right]u^{\mu}\partial_{\mu}T = 0, \qquad (16)$$

- Remarkable: these are not the same!
- They coincide if $\kappa = \text{const.}$, c.f. slide no. 5!
- If u^{μ} known, these can be solved for an arbitrary $\kappa(\mathcal{T})!$

Lattice QCD EoS

• IQCD EoS calculated for physical quark masses, continuum limit Borsányi, Fodor, Katz *et al.* JHEP **1011**, 077 (2010), arXiv:1007.2580

- Trace anomaly $I(T)/T^4$ is parametrized analytically in the cont. limit
- Pressure is given by $\frac{p(T)}{T^4} = \int \frac{dT}{T} \frac{I(T)}{T^4}$
- From $I = \epsilon 3p \Rightarrow \kappa = I/p + 3$

A realistic EoS

- Take EoS from IQCD: trace anomaly $I(T)/T^4$ parametrized
- EoS in form of $\kappa(T)$ analytically given

Csanád, Nagy, Lökös, arXiv:1205.5965

• Problem: $d(\kappa T)/dT \leq 0$ at T = 173 - 225 MeV

• Recall slide no. 14: conserved charges not compatible with this EoS!

A new $\kappa(T)$ type of solution without conserved charge

 A new solution for arbitrary κ(T): Csanád, Nagy, Lökös, arXiv:1205.5965

 $\sigma = \sigma_0 \frac{\tau_0^3}{\tau^3}, \qquad (17)$ $u^{\mu} = \frac{x^{\mu}}{\tau}, \qquad (18)$ $\frac{\tau_0^3}{\tau^3} = \exp \int_{T_0}^T \left(\frac{\kappa(\beta)}{\beta} + \frac{1}{\kappa(\beta) + 1} \frac{d\kappa(\beta)}{d\beta}\right) d\beta \qquad (19)$ $\beta \text{ is the integration variable here, i.e. } T$

• Arbitrary $\kappa(T)$ functions may be used, the QCD one as well

A new $\kappa(T)$ type of solution with conserved charge

• A new solution with conserved charge n, for arbitrary $\kappa(T)$: Csanád, Nagy, Lökös, arXiv:1205.5965

$$n = n_0 \frac{\tau_0^3}{\tau^3},$$
(20)
 $n^{\mu} = \frac{x^{\mu}}{\tau^3}.$
(21)

$$u^{\mu} = \frac{1}{\tau}, \qquad (21)$$
$$\tau_0^3 = \int_{-\tau}^{\tau} \left(1 \, d\kappa(\beta)\beta \right) \, d\sigma \qquad (22)$$

$$\frac{\tau_0}{\tau^3} = \exp \int_{\mathcal{T}_0} \left(\frac{1}{\beta} \frac{d\kappa(\beta)\beta}{d\beta} \right) d\beta$$
(22)

- Arbitrary $\kappa(T)$ functions may be used
- For some choices of the $\kappa(T)$ function this solution becomes ill-defined
- If $d(\kappa T)/dT \leq 0$, the last equation cannot be inverted
- Same problem as mentioned earlier

A new $\kappa(p)$ type of solution without conserved charge

• A partly implicit new solution: Csanád, Nagy, Lökös, arXiv:1205.5965

$$\sigma = \sigma_0 \frac{\tau_0^3}{\tau^3}, \qquad (23)$$

$$u^{\mu} = \frac{x^{\mu}}{\tau}, \qquad (24)$$

$$\frac{\tau_0^3}{\tau^3} = \int_{\rho_0}^{\rho} \left(\frac{\kappa(\beta)}{\beta} + \frac{d\kappa(\beta)}{d\beta}\right) \frac{d\beta}{\kappa(\beta) + 1} \qquad (25)$$

• This solution may be used if κ is given as a function of pressure p.

Results for the lattice QCD EoS

- Let's assume the IQCD EoS
- T(t) can be calculated for the above solutions (see arXiv:1205.5965)

• Result applicable very widely: plug in $\tau_{\rm final}/\tau_{\rm ini}$, get $T_{\rm final}/T_{\rm ini}$

Outline

1 Hydrodynamics

- 2 Constant EoS hydro compared to data
- 3 Solutions with a QCD EoS

- Constant EoS solutions work when describing data
- Large temperature change: variable κ more realistic
- Found new exact solutions with arbitrary $\kappa(T)$ or $\kappa(p)$
- Lattice QCD EoS applicable when no conserved charges
- Calculated $T(\tau)$
- Only assuming a $au_{\text{final}}/ au_{\text{ini}}$, one gets $T_{\text{final}}/T_{\text{ini}}$