Observations from the OP side

Bernard Vandorpe (Measurement)

Oliver Hans (Presentation)

Many thanks to Bernard for the effort and explanations.

Please interrupt for questions!

B-train calibration

During the 2011 run, OP observed with the installed FMR, a field fluctuation.

The measurement shows a field fluctuation of 2 Gauss. Sampler BfC has only 0.4Gauss fluctuation.

OASIS FMR signal

After some investigation the issue could be traced back to a calibration process taking place during the peaking strip signal.

The calibration window was shifted and OP sees this issue as solved.

First observation

Tune stability on flat top

7000 Gauss flat top for 500ms (14 GeV - 6666 Gauss)

12566 Gauss flat top for 500ms (26 GeV)

First observation

Tune stability on flat top

Bernard performed measurements on 14 different flat tops (Qh and Qv)

B-field (Gauss)	Qh start	dQh (10 ⁻³)	Qv start	dQv (10 ⁻³)
5000	0.226	0.31	0.303	-0.01
6000	0.223	0.88	0.306	0.20
7000	0.222	0.84	0.307	0.72
7500	0.220	1.6	0.312	0.15
8000	0.216	1.98	0.312	0.1
8500	0.215	2.44	0.313	-0.19
9000	0.216	2.39	0.313	-0.11
10000	0.218	2.35	0.312	0.40
11000	0.224	2.33	0.312	0.90
11500	0.225	2.43	0.327	2.61
12000	0.229	4.66	0.315	3.28
12300	0.234	7.01	0.291	2.20
12566	0.232	8.40	0.277	1.41
12650	0.224	8.46	0.267	0.00

Observation:

- Tune shift on flat top
- Higher flat top field -> higher dQh+v

Machine stability seen by Samplers

PFW measured on 26 GeV flat top over 300ms, 5 cycles

Deviation

WDNP

WDW

MPS on 24 GeV flat top for 700ms

WDNI

83.8

Field regulated

Machine stability seen by Samplers

Matrix (B=12566 Gauss)	dI (A)	dQh	dQv
WFN	0.6	0.0009	-0.0004
WFW	0.3	0.0008	0.0005
WDN	0.6	-0.001	-0.0015
WDW	0.6	-0.0009	-0.0024
W8L	4	-0.0025	-0.0024

Tune shift calculated

Observed (B=12566 Gauss)	dQh	dQv
	0.0084	0.0014

Tune shift observed

To be noted: The PFW current has ripples, whereas the tune shift has clear 1st order function

Second observation

Tune stability vs MRP

Measurenents on 26 GeV flat top with a length of 300ms

Second observation

Tune stability vs MRP

Measurenents on 26 GeV flat top with a length of 300ms

No orbit deformation observed (orbit H and V measured at Rpos -20, 0, 30mm)

Example: Hor. Orbit for Rpos omm

Third observation Tune vs PFW dI/dt

Measurements with a 24 GeV ION beam

With fast ramp PFW and B-field have important over shoot. Stabilized at C1000.

Measurement done between 1000 – 1700 ms

Third observation

Measurements with a 24 GeV ION beam

Tune vs PFW dI/dt

Third observation

Measurements with a 24 GeV ION beam

Tune vs PFW dI/dt

Analysis

Example:

- Vertical tune
- Basic PWF setting
- MRP-10 mm

Analysis

Summary

Machine settings are stable (what OP can see via Sampler)
Tune is not stable

Tune changes with a first order function of time. With a coefficient depending on B-field, MRP and dI/dt (PFW).

Outlook

Measurement campaign

1st Find a setting to measure the influence of one single PFW (WFW, WDW)
2nd More measurements with current regulation.

All data shown in this presentation, and many more, could be found at: \\Cs-ccr-sambai\pcshare\user\vandorpe\public\QhOnFlatTop

The measurement campaign was not always straight forward.

But Bernard did a great job.

Discussion