

Studies of rare B decays at LHCb

Tomasz Skwarnicki

Syracuse University

- Very rare decays in SM:
 - PDG: the smallest measured BR in any B decay ~10⁻⁶
 - PDG: the tightest UL on any B decay BR < ~10⁻⁷
- Small theoretical uncertainty
- Excellent place to look for contributions from BSM:

Could be strongly enhanced.

In some models negative interference with the SM.

CDF 7 fb⁻¹ 7/12/11 PRL 107,191801(2011) CDF 9.6 fb⁻¹ 3/5/12

$$(1.8^{+1.1}_{-0.9}) \times 10^{-8} < 4.0 \times 10^{-8} (95\% \text{ CL})$$

 2.1σ evidence for NP

$$(1.3^{+0.9}_{-0.7}) \times 10^{-8} < 3.1 \times 10^{-8}$$

Let us

catch NP in a loop Colliders and bb rates

Year

- Tremendous rate potential at hadron colliders
 - physics reach determined by the detector capabilities not by the machine
- Collect all b-hadron species at the same time:
 - additional gain by a factor of ~10-100 in integrated B_s rates at hadronic colliders
- Charm rates factor of 10 higher than beauty rates:
 - nuisance and great physics opportunity at the same time

- Some advantages of LHCb (forward spectrometer):
 - comparable bb cross-section in much smaller solid angle; smaller number of electronic channels; smaller event size; much larger trigger bandwidth to tape (~3.5 kHz)
 - Dedicated heavy flavor experiment: b and c physics dominate the trigger bandwidth (e.g. CMS b-trigger rate in 2011 ~25 Hz; 2 orders of magnitude less than LHCb)
 - large p for small p_T (in central region $p \sim p_T$); can identify muons to lower p_T values
- Limitation of LHCb:
 - luminosity limited by the detector readout capabilities

$BR(B_{s.d} \rightarrow \mu^+\mu^-)$

Analysis approach

LHCb-PAPER-20120007 arXiv:1203.4493 1 fb⁻¹ (full 2011 statistics)

Boosted **D**ecision **T**ree discriminator combining info from p_T , polarization angle, vertex displacement, isolation etc. Independent of the charged track ID. Uncorrelated with $m_{\mu\mu}$.

Trained on signal and background MC but then signal and background distributions determined from the real data: ${\bf B^0} \to {\bf h^+h^-}$ for signal, ${\bf m}_{\mu\mu}$ sidebands for the background

0.4

0.6

8.0

BDT

0.2

Estimate $m_{\mu\mu}$ resolution by interpolating from the observed resolution for $J/\psi, \psi', Y, Y', Y'' \to \mu^+\mu^-$ and $B^0 \to h^+h^-$

BR($B_{s,d} \rightarrow \mu^+\mu^-$) normalization Normalization of BR determined from 3 different control

channels:

BR / N _{signal}	$\operatorname*{Bd}_{\alpha_{B_d \to \mu^+ \mu^-}^{cal}}$	$\alpha^{cal}_{B_s \to \mu^+ \mu^-}$
	$(\times 10^{-11})$	$(\times 10^{-10})$
$B^+ \to J/\psi K^+$	8.464 ± 0.433	3.170 ± 0.297
$B_s^0 \to J/\psi \phi$	11.13 ± 3.124	4.169 ± 1.123
$B^0 \to K^+\pi^-$	7.709 ± 0.957	2.887 ± 0.424
(8.4±0.4)x10 ⁻¹¹ (3.2±0.3)x10 ⁻¹⁰		

According to SM BRs expect:

~10
$$B_s \rightarrow \mu^+ \mu^-$$

~ 1 $B^0 \rightarrow \mu^+ \mu^-$
events

Actual upper limits determined from the 2D information without the BDT cut (97% of the sensitivity comes from the BDT>0.5 data)

BR(B_s
$$\rightarrow \mu^{+}\mu^{-}$$
) SM
CDF 9.6 fb⁻¹
LHCb 1 fb⁻¹

BR(B⁰
$$\rightarrow \mu^{+}\mu^{-}$$
) SM
LHCb 1 fb⁻¹

$$(3.2 \pm 0.2) \times 10^{-9}$$

 $(13^{+9}_{-7}) \times 10^{-9}$ $< 31 \times 10^{-9}$ (95%CL)
 $(0.8^{+1.8}_{-1.2}) \times 10^{-9}$ $< 4.5 \times 10^{-9}$ (95%CL)
(1.3 σ below SM)

m...(MeV/c2)

$$M \qquad (0.10 \pm 0.01) \times 10^{-9}$$

$$< 1.0 \times 10^{-9} (95\% CL)$$

$BR(B_{s,d} \rightarrow \mu^+\mu^-)$ implications

From D. Straub @ Moriond E.W.

- SM has survived an order of magnitude improvement in the experimental sensitivity
- Lots of room still left for NP before the experimental errors reach the theoretical uncertainty in the SM predictions

$BR(B_{s,d} \rightarrow \mu^+\mu^-)$ future

- $B_{s,d} \rightarrow \mu^+ \mu^-$ are the easiest B decays to probe
- CMS (ATLAS) have meaningful results (see Joel's talk) and can become more sensitive in the next few years (until LHCb upgrade) thanks to larger integrated luminosities
- LHCb upgrade needed to probe BR(B_s $\rightarrow \mu^+\mu^-$) with a sensitivity comparable to the theoretical uncertainty on the SM predictions

(generated 2012-05-03 01:08 including fill 2583)

LHCb

Search for $D^0 \rightarrow \mu^+\mu^-$

LHCb-CONF-2012-005 0.9 fb-1

- Extremely small is SM: $BR_{SM}(D^0 \rightarrow \mu^+\mu^-) < 6x10^{-11}$
- Best limit from Belle PRD 81,091102 (2010)
 4x10-7 (90% CL)

Fitted signal yield (1.2σ) from zero

LHCb preliminary

 $<1.1x10^{-8}$

EW penguin: $B^0 \rightarrow K^{*0} \mu^+ \mu^-$

- Look for interference of these SM diagrams. NP diagrams can contribute.
- Need to eliminate effect of form-factors various observables related to angular correlations. Most famous A_{FR}

$$A_{FB}\left(q^2\right) = \frac{N_F - N_B}{N_F + N_B}$$

EW penguin: $B^0 \rightarrow K^{*0} \mu^+ \mu^-$

Before summer 2011:

Babar, Belle and CDF

- Babar 60 events with B/S=0.3
- Belle 247

0.25

- CDF **100**

 (4.4 fb^{-1})

0.4

New results:

- CDF 164

(6.8 fb-1)

0.4

- LHCb 900

(1.0 fb-1)

0.25

BaBar: PRD 79, 031102 (2009)

First measurement of A_{FB} zero-crossing point

- The SM predicts $A_{\rm FB}$ to change sign at a well defined point in q^2
- This zero-crossing point q_0^2 is largely free from form-factor uncertainties
- Extracted through a 2D fit to the foward- and backward-going $m_{\rm B^0}$ and q^2 distributions

- The worlds first measurement of q_0^2 , at $q_0^2 = 4.9^{+1.1}_{-1.3}~{
 m GeV}^2/c^4$ [preliminary]
- ullet This is consistent with SM predictions which range from 4 4.3 ${
 m GeV}^2/c^4$

$B^0 \rightarrow K^{*0} \mu^+ \mu^-$ more observables

We have also measured:

 $BR(B_s \to \phi \mu^+ \mu^-) = (0.78 \pm 0.01 \pm 0.06 \pm 0.28) \times 10^{-6}$

- So far no challenge to SM
- Experimental errors statistics dominated and larger than theoretical uncertainty
- LHCb already has the most sensitive measurements:
 - 5 times more data by 2018
 - 50 times more data with upgrade
- LHCb upgrade will have better sensitivity than super e⁺e⁻ factories in this exclusive channel (e⁺e⁻ can also do inclusive measurement)

$$B^+ \rightarrow \pi^+ \mu^+ \mu^-$$

• b \rightarrow d transition, suppressed relatively to B+ \rightarrow K+ μ + μ - by $|V_{td}|^2/|V_{ts}|^2\sim0.05$

$$BR_{SM}(B^+ \to \pi^+ \mu^+ \mu^-) = (2.0 \pm 0.2) \times 10^{-8}$$

Could be larger in non-SM

Belle PRD 78, 011101 (2008)
$$< 7.0 \times 10^{-8}$$

LHCb $(2.4\pm0.6\pm0.2)\times10^{-8}$

LHCb-CONF-2012-006

Rarest B decay ever detected!

Other new rare decay results

- Search for $B^0 \rightarrow \mu^+\mu^-\mu^+\mu^-$ (first limits) LHCb-CONF-2012-010
- Search for majorana neutrino in B⁻ → X⁺μ⁻μ⁻
 (tightest limits) LHCb-PAPER-2011-038 arXiv:1201.5600
- Measurement of direct CP asymmetry in $B^0 \rightarrow K^{*0}\gamma$ (consistent with zero, best measurement) LHCb-CONF-2012-004
- Most precise measurement of direct CP asymmetry in $B^0 \to K^+\pi^-$ (6 σ away from zero), first observation of CP violation in $B_s \to K^+\pi^-$ (3.3 σ away from zero) LHCb-PAPER-2011-029
- Time dependent measurement of CPV in $B_{d,s} \to hh$ (direct CP asymmetry term in $B^0 \to \pi^+\pi^-$ favors BaBar results) LHCb-CONF-2012-007

Conclusions

- LHC is a beauty and charm factory for foreseeable future:
 - Unique reach in B_s physics. Best sensitivity in many B_{d,u},D measurements.
- LHCb is the first hadron collider experiment dedicated to heavy flavor physics
 - The recent results have proven that a broad beauty and charm physics program at a hadronic collider is possible with quality of results matching the e+e- factories.
 - Reaching new levels of sensitivity (i.e. higher energy scales) in many key measurements:
 - No indication of NP in beauty decays yet. Plenty of room for NP before theoretical limitations are reached.
 - NP seen in D⁰ decays [A_{CP}(K+K-)-A_{CP}(π+π-)] ?
 - More data to be collected in next few years
 - Channels with many neutrals and neutrino(s) will remain exclusive domain of the e⁺e⁻ factories.
- Physics reach limited by the detector capabilities not the collider:
 - LHCb upgrade in 2018.