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1 Introduction
Supersymmetric (SUSY) extensions of the standard model (SM) solve the hierarchy problem
and provide a mechanism for unifying particle interactions [1, 2]. Assigning R-parity as Rp =
(−1)3B+L+2s , where B and L are baryon and lepton numbers, and s is the particle spin, all SM
particle fields have Rp = +1 while all superpartner fields have Rp = −1. In models where Rp
is conserved, superpartners can only be produced in pairs, and the lightest superpartner (LSP)
is stable and a candidate for a dark matter particle. In addition, Rp conservation ensures proton
stability. The role of R-parity in protecting the proton lifetime is an example of a more gener-
alized “matter symmetry,” which applies to theories besides SUSY wherein partner particles
with differing spins are posited [3].

Models with R-parity-violating (RPV) interactions conserving either B or L in addition to s can
avoid direct contradiction with the proton-lifetime upper limits [4]. The most general specifica-
tion of the superpotential includes three Rp violating terms each parametrized by the Yukawa
couplings λijk, λ�

ijk or λ��
ijk.

W/Rp =
1
2

λijkLiLjĒk + λ�
ijkLiQjD̄k +

1
2

λ��
ijkŪiD̄jD̄k,

where i, j, and k are generation indices, L and Q are the lepton and quark SU(2)L doublet
superfields and Ē, D̄, and Ū are the charged lepton, down-like quark, and up-like quark SU(2)L
singlet superfields. The third term violates baryon-number conservation, while the first and
second terms are lepton-number violating. In this analysis, we consider leptonic R-parity-
violating (L-RPV) models with λijk �= 0 and λ�

ijk = λ��
ijk = 0, as well as hadronic R-parity-

violating (H-RPV) models with λijk = λ�
ijk = 0 and λ��

ijk �= 0. We look for leptons in the final
state coming from decays of squarks and gluinos through an intermediate particle, either a
neutralino (L-RPV) or bino/higgsino (H-RPV).

If λijk is non-zero, the intermediate particle will decay and yield multilepton final states. The
value of λijk determines the lifetime and therefore the decay length of the intermediate particle,
which in our models is the bino. Values of λijk considered in this analysis correspond to decay
lengths � 100 µm. Our results are independent of the decay length.

An upper limit on λijk is set by constraints from neutrino-mass values. We choose values for
λijk or λ��

ijk that give prompt decay and are consistent with neutrino mass values. In this paper
the lepton-generation indices corresponding to e, µ, and τ are sometimes denoted by 1, 2, and
3 respectively.

RPV interactions allow for single production of SUSY particles (sparticles) and for sparticle
decay into SM particles only. The decay of the lightest SUSY particle (LSP) results in extra
leptons. Due to their clean final-state multilepton signatures, processes with single-slepton
production followed by decay to a pair of SM charged leptons are promising search channels
for RPV SUSY particles [3]. Prior searches for RPV interactions include those by the CDF and
the D0 experiments at the Tevatron [5, 6], which were recently superseded by the Compact
Muon Solenoid (CMS) experiment at Large Hadron Collider (LHC) using 35 pb−1 of integrated
luminosity [7].

Since the LSP is unstable due to RPV, the usual experimental strategy of SUSY searches—
selecting events with large missing transverse energy (Emiss

T )—may not be optimal [3]. We
note that the H-RPV events in particular fail to produce sufficient Emiss

T in the detector. On
the other hand, if the SUSY production is dominated by electroweak processes, the final state
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Figure 2: 95% C.L. limits for RPV couplings λ122, λ123, λ233 and Hadronic-RPV scenarios as

a function of the squark and gluino masses for a SUSY topology described in the text. The

observed limits, along with limits expected in the absence of signal are shown, along with the

uncertainty in the expectation. Masses to the left of the curves are excluded. For the H-RPV

scenario gluino masses below ∼ 500 GeV/c
2

are allowed for reasons explained in the text. The

previous limit on λ122, obtained with 35 pb
−1

, is shown as a dotted line on the left plot.

λ122
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Figure 2: 95% C.L. limits for RPV couplings λ122, λ123, λ233 and Hadronic-RPV scenarios as

a function of the squark and gluino masses for a SUSY topology described in the text. The

observed limits, along with limits expected in the absence of signal are shown, along with the

uncertainty in the expectation. Masses to the left of the curves are excluded. For the H-RPV

scenario gluino masses below ∼ 500 GeV/c
2

are allowed for reasons explained in the text. The

previous limit on λ122, obtained with 35 pb
−1

, is shown as a dotted line on the left plot.
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1 Introduction
Supersymmetric (SUSY) extensions of the standard model (SM) solve the hierarchy problem
and provide a mechanism for unifying particle interactions [1, 2]. Assigning R-parity as Rp =
(−1)3B+L+2s , where B and L are baryon and lepton numbers, and s is the particle spin, all SM
particle fields have Rp = +1 while all superpartner fields have Rp = −1. In models where Rp
is conserved, superpartners can only be produced in pairs, and the lightest superpartner (LSP)
is stable and a candidate for a dark matter particle. In addition, Rp conservation ensures proton
stability. The role of R-parity in protecting the proton lifetime is an example of a more gener-
alized “matter symmetry,” which applies to theories besides SUSY wherein partner particles
with differing spins are posited [3].

Models with R-parity-violating (RPV) interactions conserving either B or L in addition to s can
avoid direct contradiction with the proton-lifetime upper limits [4]. The most general specifica-
tion of the superpotential includes three Rp violating terms each parametrized by the Yukawa
couplings λijk, λ�

ijk or λ��
ijk.

W/Rp =
1
2

λijkLiLjĒk + λ�
ijkLiQjD̄k +

1
2

λ��
ijkŪiD̄jD̄k,

where i, j, and k are generation indices, L and Q are the lepton and quark SU(2)L doublet
superfields and Ē, D̄, and Ū are the charged lepton, down-like quark, and up-like quark SU(2)L
singlet superfields. The third term violates baryon-number conservation, while the first and
second terms are lepton-number violating. In this analysis, we consider leptonic R-parity-
violating (L-RPV) models with λijk �= 0 and λ�

ijk = λ��
ijk = 0, as well as hadronic R-parity-

violating (H-RPV) models with λijk = λ�
ijk = 0 and λ��

ijk �= 0. We look for leptons in the final
state coming from decays of squarks and gluinos through an intermediate particle, either a
neutralino (L-RPV) or bino/higgsino (H-RPV).

If λijk is non-zero, the intermediate particle will decay and yield multilepton final states. The
value of λijk determines the lifetime and therefore the decay length of the intermediate particle,
which in our models is the bino. Values of λijk considered in this analysis correspond to decay
lengths � 100 µm. Our results are independent of the decay length.

An upper limit on λijk is set by constraints from neutrino-mass values. We choose values for
λijk or λ��

ijk that give prompt decay and are consistent with neutrino mass values. In this paper
the lepton-generation indices corresponding to e, µ, and τ are sometimes denoted by 1, 2, and
3 respectively.

RPV interactions allow for single production of SUSY particles (sparticles) and for sparticle
decay into SM particles only. The decay of the lightest SUSY particle (LSP) results in extra
leptons. Due to their clean final-state multilepton signatures, processes with single-slepton
production followed by decay to a pair of SM charged leptons are promising search channels
for RPV SUSY particles [3]. Prior searches for RPV interactions include those by the CDF and
the D0 experiments at the Tevatron [5, 6], which were recently superseded by the Compact
Muon Solenoid (CMS) experiment at Large Hadron Collider (LHC) using 35 pb−1 of integrated
luminosity [7].

Since the LSP is unstable due to RPV, the usual experimental strategy of SUSY searches—
selecting events with large missing transverse energy (Emiss

T )—may not be optimal [3]. We
note that the H-RPV events in particular fail to produce sufficient Emiss

T in the detector. On
the other hand, if the SUSY production is dominated by electroweak processes, the final state
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Figure 2: 95% C.L. limits for RPV couplings λ122, λ123, λ233 and Hadronic-RPV scenarios as

a function of the squark and gluino masses for a SUSY topology described in the text. The

observed limits, along with limits expected in the absence of signal are shown, along with the

uncertainty in the expectation. Masses to the left of the curves are excluded. For the H-RPV

scenario gluino masses below ∼ 500 GeV/c
2

are allowed for reasons explained in the text. The

previous limit on λ122, obtained with 35 pb
−1

, is shown as a dotted line on the left plot.
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3 respectively.
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Fig. 4. Top: Limits on the slepton co-NLSP model as a function of the gluino and
wino-like chargino masses obtained by comparing with leading order (LO) or next
to leading order (NLO) cross sections. Bottom: Limits for the R-parity violating sce-
nario as a function of the gluino and degenerate squark masses with either λ122 != 0
or λ123 != 0. For both exclusions, squark and slepton universality is enforced with
vanishing left–right mixing; mass relationships for other superpartner masses are
described in the text.

The statistical model uses a Poisson distribution for the num-
ber of events in each channel, while the nuisance parameters
are modeled with a Gaussian, truncated to be always positive.
The significant nuisance parameters are the luminosity uncertainty,
trigger efficiency, and lepton identification efficiencies. The ex-
pected value in the model is the sum of the signal and the ex-
pected backgrounds. We set 95% confidence level (CL) upper lim-
its on the signal parameters and cross sections using a Bayesian
method with a flat prior. We check the stability of the result
with respect to nuisance constraints selection by substituting log-
normal constraints for the Gaussian ones, and find the upper limit
results to be stable within 3%. The statistical model is implemented
in the program package RooStats [36]. We apply these upper lim-
its on the contribution of new physics for the following SUSY sce-
narios.

7.2. Slepton co-NLSP

In supersymmetry, multilepton final states arise naturally in the
subset of GMSM parameter space where the right-handed sleptons
are flavour-degenerate and at the bottom of the Minimal Super-
symmetric Standard Model (MSSM) mass spectrum. The Higgsi-
nos are decoupled. Supersymmetric production proceeds mainly
through pairs of squarks and/or gluinos. Cascade decays of these
states eventually pass sequentially through the lightest neutralino
( g̃, q̃ → χ0 + X ), which decays into a slepton and a lepton (χ0 →

#̃±#∓). Each of the essentially degenerate right-handed sleptons
promptly decays to the Goldstino component of the almost mass-
less and non-interacting gravitino and a lepton (#̃ → G̃#) thus
yielding events with four or more hard leptons and missing en-
ergy. Such scenarios have a high cross section with little back-
ground [17].

The 95% CL exclusion limits for the slepton co-NLSP model is
shown in the top panel of Fig. 4. Deviation from the expected limit
is due to a modest data excess. The result corresponds to a limit
of ≈ 6 events on the signal yield, and a slepton co-NLSP bench-
mark 95% CL upper limit on the cross section of σ95 = 0.2–0.4 pb.
Squark and gluino masses of up to 830 GeV/c2 and 1040 GeV/c2

are excluded.

7.3. R-parity violation

Although R-parity is often assumed to be conserved, the most
general formulation of the MSSM superpotential contains R-parity
violating couplings λi jk , where i, j, and k are generation indices.
We study models in which lepton-number-violating decays are al-
lowed, but baryon number is conserved, so these models are not
constrained by limits on proton lifetime which require both B and
L violation.

Events with four or more charged leptons in the final state
originate from the production of pairs of squarks or gluinos, each
of which cascade decays down to the LSP, which in the model
considered here is the neutralino. Each neutralino decays to two
charged leptons and a neutrino. Any nonzero value of λi jk causes
the neutralino to decay, yielding multilepton final states. The actual
value of λi jk simply determines the lifetime and hence the decay
length of the neutralino. We consider λi jk to be sufficiently large
so that the decay is prompt, the exclusion limits are independent
of λi jk value, and thus the search is sensitive only to the sparti-
cle masses. We consider the cases of nonzero λ122 and nonzero
λ123 separately. For the λ122 coupling, the two charged leptons in
each neutralino decay are electron and/or muon, while for λ123,
one of the charged leptons is a tau, and the other an electron or
muon [37].

The 95% exclusion limits in the squark–gluino mass plane ob-
tained using the inclusive kinematic selection are shown in the
bottom panel of Fig. 4 for a topology with fixed mχ0

1
= 300 GeV/c2,

m#̃L
= m#̃R

= 1000 GeV/c2, and with the wino and the Higgsino
decoupled. The bumps in the contour plot are due to the fact that
when the squark mass is larger than the gluino mass there are
two additional jets in the event. This lowers the efficiency of the
lepton isolation requirement and therefore decreases the signal ac-
ceptance. The limits for the λ123 coupling are lower because of
the lower acceptance for taus. These results substantially extend
previous exclusion limits from CDF and D0 based on integrated lu-
minosities of 350 pb−1 [11,12].

7.4. mSUGRA/CMSSM scenario

For the mSUGRA/CMSSM [13,14] scenario, limits in the m0–m1/2
plane are shown in Fig. 5 for A0 = 0, tanβ = 3, and µ > 0. The
TeV3 benchmark point defined above is close to the excluded limit
from the Tevatron data; the total number of expected events af-
ter all cuts is ≈ 7 for the 35 pb−1 data sample. As can be seen,
our results extend the excluded region in comparison with pre-
vious results from LEP and the Tevatron. For small values of m0
the sleptons can become lighter than the gauginos, so the gaugi-
nos will decay into slepton and lepton (two-body decay), although
for larger values of m0 three-body decays will dominate. While for
two-body decays the branching fraction into leptons is 100%, it de-
creases rapidly for three-body decays. In the transition region from
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Figure 7: Excluded region in the gluino mass versus wino-like chargino mass plane for the
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C.L. For comparison the expected limits are shown as well.
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Figure 8: Excluded regions for the CMSSM scenarios with tan β = 3 (left) and tan β = 10
(right). Values of m0, m1/2 below the red curve (observed limit) are excluded by this analysis.
For comparison the expected limits are shown as well.

We set 95% confidence level (C.L.) upper limits on the signal parameters and cross sections
using the modified frequentist construction (usually referred to as CLs) [29–31]. We apply
these upper limits on the contribution of new physics for the SUSY scenarios outlined below.
All cross sections in the following exclusion plots include next-to-leading-order corrections
calculated using PROSPINO [32].

6.2 Exclusion in the Slepton co-NLSP Scenario

In supersymmetry, multilepton final states arise naturally in the subset of GMSM parameter
space where the right-handed sleptons are flavor-degenerate and at the bottom of the mini-
mal supersymmetric standard model (MSSM) mass spectrum. The Higgsinos are decoupled.
Supersymmetric production proceeds mainly through pairs of squarks and/or gluinos. Cas-
cade decays of these states eventually pass sequentially through the lightest neutralino (g̃, q̃ →
χ0 + X), which decays into a slepton and a lepton (χ0 → �̃±�∓). Each of the essentially degener-
ate right-handed sleptons promptly decays to the Goldstino component of the almost massless
and non-interacting gravitino and a lepton (�̃ → G̃�) thus yielding events with four or more

EW production coming into play
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Table 1: Number of observed events summed over electron and muon flavors compared with

expectations from simulated and data-driven backgrounds. The labels in the first column refer

to whether or not there are OSSF (no-OSSF) pairs, whether Z → �+�− is excluded (no-Z),

and the HT and E
miss

T
requirements. Labels along the top of the table give the number of τh

candidates, 0, 1, or 2. All channels are mutually exclusive.

Selection N(τh)=0 N(τh)=1 N(τh)=2

obs expected obs expected obs expected

4 Lepton results

4� E
miss

T
>50, HT >200, no Z 0 0.018 ± 0.005 0 0.09 ± 0.06 0 0.7 ± 0.7

4� E
miss

T
>50, HT > 200, Z 0 0.22 ± 0.05 0 0.27 ± 0.11 0 0.8 ± 1.2

4� E
miss

T
>50, HT <200, no Z 1 0.20 ± 0.07 3 0.59 ± 0.17 1 1.5 ± 0.6

4� E
miss

T
>50, HT <200, Z 1 0.79 ± 0.21 4 2.3 ± 0.7 0 1.1 ± 0.7

4� E
miss

T
<50, HT >200, no Z 0 0.006 ± 0.001 0 0.14 ± 0.08 0 0.25 ± 0.07

4� E
miss

T
<50, HT >200, Z 1 0.83 ± 0.33 0 0.55 ± 0.21 0 1.14 ± 0.42

4� E
miss

T
<50, HT <200, no Z 1 2.6 ± 1.1 5 3.9 ± 1.2 17 10.6 ± 3.2

4� E
miss

T
<50, HT <200, Z 33 37 ± 15 20 17.0 ± 5.2 62 43 ± 16

3 Lepton results

3� E
miss

T
>50, HT >200, no-OSSF 2 1.5 ± 0.5 33 30.4 ± 9.7 15 13.5 ± 2.6

3� E
miss

T
>50, HT <200, no-OSSF 7 6.6 ± 2.3 159 143 ± 37 82 106 ± 16

3� E
miss

T
<50, HT >200, no-OSSF 1 1.2 ± 0.7 16 16.9 ± 4.5 18 31.9 ± 4.8

3� E
miss

T
<50, HT <200, no-OSSF 14 11.7 ± 3.6 446 356 ± 55 1006 1026 ± 171

3� E
miss

T
>50, HT >200, no Z 8 5.0 ± 1.3 16 31.7 ± 9.6 – –

3� E
miss

T
>50, HT >200, Z 20 18.9 ± 6.4 13 24.4 ± 5.1 – –

3� E
miss

T
>50, HT <200, no Z 30 27.0 ± 7.6 114 107 ± 27 – –

3� E
miss

T
>50, HT <200, Z 141 134 ± 50 107 114 ± 16 – –

3� E
miss

T
<50, HT >200, no Z 11 4.5 ± 1.5 45 51.9 ± 6.2 – –
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TABLE I: Selection criteria for the µµ!, ee! and eµ! analyses (all energies, masses and momenta in GeV, angles in radians) for
the low-pT selection and high-pT selection, see text for further details.
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T are electron and muon pT , respectively.
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TABLE II: Criteria for the µτ! and µττ selections (all en-
ergies, masses and momenta in GeV, angles in radians), see
text for further details.

Selection µτ! µττ

I p!1
T , p!2

T >15, >8a

II ∆φ!1!2 <2.9

"ET >20

Sig( "ET ) >8

mµ
T >20

III jet-veto HT <80

IV ptr
T >3 pτ2

T >4

∆φtr, !ET
>0.5 ∆φτ2, !ET

>0.5

V m!1,2,tr <60 <60

anti W likelihood likelihood

VI NNτ1
× NNτ2

>0.7

VII "ET × ptr
T >300 pbal

T <3.5

ap!1
T and p!2

T are muon and τ lepton pT , respectively.

as well as a reduced selection efficiency due to the small
mass difference between sneutrino and chargino. For the
intermediate region at m1/2 ≈ 245 GeV, chargino decays
via W bosons compete with decays via sleptons, lead-
ing to a reduction in leptonic branching fraction with
increasing m1/2 both below and above the threshold for
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production of a real W boson.
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the choice of tanβ, as the branching fraction into τ lep-
tons increases as a function of tanβ. Figure 9 shows the
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TABLE I: Selection criteria for the µµ!, ee! and eµ! analyses (all energies, masses and momenta in GeV, angles in radians) for
the low-pT selection and high-pT selection, see text for further details.
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as well as a reduced selection efficiency due to the small
mass difference between sneutrino and chargino. For the
intermediate region at m1/2 ≈ 245 GeV, chargino decays
via W bosons compete with decays via sleptons, lead-
ing to a reduction in leptonic branching fraction with
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TABLE I: Selection criteria for the µµ!, ee! and eµ! analyses (all energies, masses and momenta in GeV, angles in radians) for
the low-pT selection and high-pT selection, see text for further details.
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as well as a reduced selection efficiency due to the small
mass difference between sneutrino and chargino. For the
intermediate region at m1/2 ≈ 245 GeV, chargino decays
via W bosons compete with decays via sleptons, lead-
ing to a reduction in leptonic branching fraction with
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TABLE I: Selection criteria for the µµ!, ee! and eµ! analyses (all energies, masses and momenta in GeV, angles in radians) for
the low-pT selection and high-pT selection, see text for further details.
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as well as a reduced selection efficiency due to the small
mass difference between sneutrino and chargino. For the
intermediate region at m1/2 ≈ 245 GeV, chargino decays
via W bosons compete with decays via sleptons, lead-
ing to a reduction in leptonic branching fraction with
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limit on σ ×BR(3$) as a function of tanβ for a chargino
mass of 130 GeV and fixing m0 such that the lightest stau

D0 multilepton search with 2.3/fb

W on-shell

W-

 χ
1
-  χ

1
0

Multileptons and EW Production

reduced Br to
multileptons



418 CMS Collaboration / Physics Letters B 704 (2011) 411–433

Fig. 5. Top: excluded region for the mSUGRA/CMSSM scenario along with the lim-
its from the multilepton searches from the Tevatron [9] and the exclusion derived
from slepton and chargino limits from LEP [38–43]. The region below the lines is
excluded at 95% CL. Bottom: the expected and observed upper limits on the cross
section times branching ratio σ × B(3") as a function of the chargino mass. The
theoretical curve crosses the observed 95% CL upper limit on the cross section at
163 GeV/c2, thus excluding charginos below this mass for the values of m0, A0,
and tanβ indicated in the figure. For comparison the regions excluded by LEP (from
slepton limits [38–43]), Tevatron chargino–neutralino production [9], and Tevatron
squark–gluino production [44] are indicated as well. This and other results have the
other MSSM parameters fixed at tanβ = 3, A0 = 0, and µ > 0 except [44], which
uses µ < 0.

two- to three-body decays the leptons become soft and fail the
pT requirement [6]. Exclusion is therefore not possible, as shown
by the non-excluded region between the two- and three-body
decay regions. We exclude gluino masses up to 628 GeV/c2 for this
choice of parameters. The 95% CL upper limit on the cross section
times branching fraction into 3" varies from σ95 = 0.8 to 2 pb. The
sensitivity to the chargino mass can be seen in the bottom panel
of Fig. 5, where the NLO cross section for m0 = 60 GeV/c2 equals
the 95% CL experimental limit of σ95 = 2 pb for chargino mass of
163 GeV/c2. Therefore, chargino masses above this value cannot
be excluded.

8. Conclusion

We have performed a search for physics beyond the SM using
multilepton final states. Taking advantage of the high centre-of-
mass energy at the LHC, we were able to probe new regions of
the MSSM parameter space. Our search complements those at the
Tevatron, which are mostly sensitive to electroweak gaugino pro-
duction via quark–antiquark interaction, while the result presented
here is mostly sensitive to gluino and squark production via quark–
gluon or gluon–gluon interactions.

The results of this search are consistent with SM expectations.
In the CMSSM parameter space, gluino masses up to 628 GeV/c2

are thus excluded for specific SUSY parameters. This result is better
than the prior multilepton results from the Tevatron, but is in the
region already ruled out by other hadronic searches at the LHC [4,
5]. However, the following two regions of MSSM are not accessi-
ble to hadronic searches. With gravitinos as LSP and sleptons as
co-NLSP, we are able to exclude squark and gluino masses of up
to 830 GeV/c2 and 1040 GeV/c2, respectively. We are also able to
exclude models with leptonic R-parity violation for gluino masses
up to 600–700 GeV/c2 depending on the choice of parameters. In
both cases our search significantly extends into the regions of SUSY
parameter space not accessible to multilepton searches at the Teva-
tron.
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12 6 Results and their Interpretation

)   2 (GeV/c
1
±!"

m
600 700 800 900

)  
 

2
  (

G
eV

/c
g~

m

1600

1700

1800

1900
95% C.L. CLs Limits

NLO observed
NLO expected median

#1±NLO expected 
#2±NLO expected 

-1 = 2.1 fbint = 7 TeV,   LsCMS Preliminary

Figure 7: Excluded region in the gluino mass versus wino-like chargino mass plane for the
slepton co-NLSP scenario. The region below the red line (observed limit) is excluded at 95%
C.L. For comparison the expected limits are shown as well.
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Figure 8: Excluded regions for the CMSSM scenarios with tan β = 3 (left) and tan β = 10
(right). Values of m0, m1/2 below the red curve (observed limit) are excluded by this analysis.
For comparison the expected limits are shown as well.

We set 95% confidence level (C.L.) upper limits on the signal parameters and cross sections
using the modified frequentist construction (usually referred to as CLs) [29–31]. We apply
these upper limits on the contribution of new physics for the SUSY scenarios outlined below.
All cross sections in the following exclusion plots include next-to-leading-order corrections
calculated using PROSPINO [32].

6.2 Exclusion in the Slepton co-NLSP Scenario

In supersymmetry, multilepton final states arise naturally in the subset of GMSM parameter
space where the right-handed sleptons are flavor-degenerate and at the bottom of the mini-
mal supersymmetric standard model (MSSM) mass spectrum. The Higgsinos are decoupled.
Supersymmetric production proceeds mainly through pairs of squarks and/or gluinos. Cas-
cade decays of these states eventually pass sequentially through the lightest neutralino (g̃, q̃ →
χ0 + X), which decays into a slepton and a lepton (χ0 → �̃±�∓). Each of the essentially degener-
ate right-handed sleptons promptly decays to the Goldstino component of the almost massless
and non-interacting gravitino and a lepton (�̃ → G̃�) thus yielding events with four or more
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We set 95% confidence level (C.L.) upper limits on the signal parameters and cross sections
using the modified frequentist construction (usually referred to as CLs) [29–31]. We apply
these upper limits on the contribution of new physics for the SUSY scenarios outlined below.
All cross sections in the following exclusion plots include next-to-leading-order corrections
calculated using PROSPINO [32].

6.2 Exclusion in the Slepton co-NLSP Scenario

In supersymmetry, multilepton final states arise naturally in the subset of GMSM parameter
space where the right-handed sleptons are flavor-degenerate and at the bottom of the mini-
mal supersymmetric standard model (MSSM) mass spectrum. The Higgsinos are decoupled.
Supersymmetric production proceeds mainly through pairs of squarks and/or gluinos. Cas-
cade decays of these states eventually pass sequentially through the lightest neutralino (g̃, q̃ →
χ0 + X), which decays into a slepton and a lepton (χ0 → �̃±�∓). Each of the essentially degener-
ate right-handed sleptons promptly decays to the Goldstino component of the almost massless
and non-interacting gravitino and a lepton (�̃ → G̃�) thus yielding events with four or more
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cal and systematic uncertainty, while the errors on the data
points are statistical only. The SUSY reference point used in
SR1 is described in the text.

No significant excess of events is found in either sig-
nal region. Upper limits on the visible production cross-
section of 9.9 fb in SR1 and 23.8 fb in SR2 are placed at
95% confidence level (CL) with the modified frequentist
CLs prescription [52]. No corrections for the effects of ex-
perimental resolution, acceptance and efficiency are ap-
plied. All systematic uncertainties and their correlations
are taken into account via nuisance parameters. The cor-
responding expected limits are 7.1 fb and 14.1 fb, respec-
tively. SR1 provides better sensitivity in the parameter
space considered and the limits are interpreted in sim-
plified models and pMSSM scenarios with M1=100GeV
and tanβ=6 (Fig. 2). The chosen M1 value leads to a
sizable mass splitting between χ̃±

1 and χ̃0
1 and therefore to

a large acceptance. The value of tanβ does not have a sig-
nificant impact on σ(pp → χ̃±

i χ̃
0
j)×BR(χ̃

±
i χ̃

0
j → $$$χ̃0

1),
which varies by ∼10% if tanβ is raised to 10.

In the simplified models, degenerate χ̃±
1 and χ̃0

2 masses
up to 300GeV are excluded for large mass differences
from the χ̃0

1. Care has to be taken when interpreting
the simplified model limit in the context of a pMSSM
scenario, where the mass of the sneutrino is lighter than
the mass of the left-handed slepton, leading to higher
lepton momenta from chargino decays and to a change
in the branching ratios of the χ̃0

2.

In summary, results from the first ATLAS search for
the weak production of chargino and neutralino can-
didates in three-lepton and missing transverse momen-
tum final states are reported. The analysis is based
on 2.06 fb−1 of proton-proton collision data delivered by
the LHC at

√
s =7TeV. No significant excess of events

is found in the data. The null result is interpreted in
pMSSM and in simplified models. For the simplified
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FIG. 2. Observed and expected 95% CL limit contours for
chargino and neutralino production in the pMSSM (upper)
and simplified model (lower) scenarios. For the simplified
models, the 95% CL upper limit on the production cross-
section is also shown. Interpolation is used to account for the
discreteness of the signal grids.

models, degenerate lightest chargino and next-to-lightest
neutralino masses are excluded up to 300GeV for mass
differences to the lightest neutralino up to 300GeV.
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Challenging Cases

EW production +
multileptons from W±, Z0, h0 in final state 
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Simplified Model wish list

EW production +
multileptons from W,± Z0, h0 in final state 
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Simplified Model wish list

EW production +
multileptons from W,± Z0, h0 in final state 
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what happens when
h0 goes off-shell?



Summary

→ EW production with BR=100% to multi-leptons
     already being constrained

→ best limits (high lepton mult., large splitting)
     in the range 600 GeV

→ Strong production with multi-leptons in final state
     significantly constrained

→ limits competitive with searches in
       hadronic final states with large MET

→ EW production with reduced BR to multi-leptons:
         2012 data may have something interesting to say!


