Multileptons in Perpective # With 70 nb⁻¹, LHC extended Tevatron sensitivity on gluinos → jets + MET #### Multileptons in Perpective begins to probe strong production #### 2011: Conquering Strong Production 5/fb of luminosity \rightarrow probe $\sigma\sim O(100 \text{ fb})$ 2012: more luminosity will improve limits, but not drastically at some point searches become dominated by systematics going to 13 TeV will open new territory #### Multileptons in Perpective begins to probe strong production #### 2012: LHC will begin to probe EW production few 10/fb of luminosity \rightarrow probe $\sigma\sim O(10 \text{ fb})$ #### 2012: LHC will begin to probe EW production few 10/fb of luminosity \rightarrow probe $\sigma\sim O(10 \text{ fb})$ Strong σ ~ 0.01-1000 pb Electroweak σ ~ 0.01-1 pb **DECAY** hadronic leptonic Electroweak σ ~ 0.01-1pb leptonic Strong σ ~ 0.01-1000 pb Electroweak σ ~ 0.01-1pb DECAY hadronic leptonic Strong σ ~ 0.01-1000 pb Electroweak σ ~ 0.01-1 pb **DECAY** hadronic #### **OUTLINE** - → Multilepton bounds on strong production - → R-parity preserving - → RPV - → Multilepton bounds on elecroweak production - → R-parity preserving - → RPV - → Interlude: Simplified Models - → Wish list of Simplified Model plots - → Concluding remarks ATLAS trilepton search with 35/pb **PMSSM** $$\begin{split} m_A &= 1 \text{ TeV} \\ \mu &= 1.5 x \text{ min}(m_{go}, m_{sq}) \\ \tan\beta &= 4 \\ A_t &= A_b = A_l = \mu/\tan\beta \\ m_{3rd\text{-}sf} &= 2 \text{ TeV} \\ m_{1st\text{-}sq} &= m_{2nd\text{-}sq} \\ m_{1st\text{-}sl} &= m_{2nd\text{-}sl} \end{split}$$ **update with 5/fb** CMS multilepton search with 2/fb hadronic RPV: $\lambda_{ijk}^{"}\bar{U}_i\bar{D}_j\bar{D}_k$ **update with 5/fb** hadronic RPV: $\lambda_{ijk}^{"}\bar{U}_i\bar{D}_j\bar{D}_k$ **update with 5/fb** hadronic RPV: $\lambda_{ijk}^{"}\bar{U}_i\bar{D}_j\bar{D}_k$ CMS multilepton search with 35/pb CMS multilepton search with 35/pb slepton co-NLSP in GMSB bounds dominated by strong production **updated with 2/fb** **updated with 5/fb** **updated with 5/fb** **update with 5/fb** | Selection | | $N(\tau_h)=0$ | | $N(\tau_h)=1$ | | $N(\tau_h)=2$ | |--|-----|-------------------|-----|-----------------|-----|-----------------| | | obs | expected | obs | expected | obs | expected | | 4 Lepton results | | | | | | | | $4\ell E_{\rm T}^{\rm miss} > 50, H_{\rm T} > 200, \text{ no Z}$ | 0 | 0.018 ± 0.005 | 0 | 0.09 ± 0.06 | 0 | 0.7 ± 0.7 | | $4\ell E_{\rm T}^{\rm miss} > 50, H_{\rm T} > 200, Z$ | 0 | 0.22 ± 0.05 | 0 | 0.27 ± 0.11 | 0 | 0.8 ± 1.2 | | $4\ell E_{\rm T}^{\rm miss} > 50, H_{\rm T} < 200, {\rm no} {\rm Z}$ | 1 | 0.20 ± 0.07 | 3 | 0.59 ± 0.17 | 1 | 1.5 ± 0.6 | | $4\ell E_{\rm T}^{\rm miss} > 50, H_{\rm T} < 200, Z$ | 1 | 0.79 ± 0.21 | 4 | 2.3 ± 0.7 | 0 | 1.1 ± 0.7 | | $4\ell E_{\rm T}^{\rm miss}$ <50, $H_{\rm T}$ >200, no Z | 0 | 0.006 ± 0.001 | 0 | 0.14 ± 0.08 | 0 | 0.25 ± 0.07 | | $4\ell E_{\rm T}^{\rm miss}$ <50, $H_{\rm T}$ >200, Z | 1 | 0.83 ± 0.33 | 0 | 0.55 ± 0.21 | 0 | 1.14 ± 0.42 | | $4\ell E_{\rm T}^{\rm miss} < 50, H_{\rm T} < 200, {\rm no} {\rm Z}$ | 1 | 2.6 ± 1.1 | 5 | 3.9 ± 1.2 | 17 | 10.6 ± 3.2 | | $4\ell E_{\rm T}^{\rm miss} < 50, H_{\rm T} < 200, Z$ | 33 | 37 ± 15 | 20 | 17.0 ± 5.2 | 62 | 43 ± 16 | ### CMS & ATLAS multilepton search with 35/pb CMS multilepton search with 2/fb ### CMS multilepton search with 2/fb ## Strong or weak production? Free parameters: masses $\sigma \times Br$ ATLAS multilepton search with 2/fb #### ATLAS multilepton search with 2/fb ## First Hand update from CMS! (5/fb) ### Challenging Cases EW production + multileptons from W^{\pm} , Z^0 , h^0 in final state ## Simplified Model wish list EW production + multileptons from W, $^{\pm}$ Z 0 , h 0 in final state #### overall compression ### Simplified Model wish list EW production + multileptons from $W,^{\pm} Z^0$, h^0 in final state local compression $m_{\chi_1^0}$ $m_{\chi_2^0}$ m_{χ} what happens when h⁰ goes off-shell? $m_{\chi_1^{\pm}}$ m_{χ_1} ### Summary - → Strong production with multi-leptons in final state significantly constrained - → limits competitive with searches in hadronic final states with large MET - → EW production with BR=100% to multi-leptons already being constrained - → best limits (high lepton mult., large splitting) in the range 600 GeV - → EW production with reduced BR to multi-leptons: 2012 data may have something interesting to say!