Theoretical issues and techniques in bottom and charm physics

Enrico Lunghi

Indiana University

Chicago 2012 workshop on LHC physics May 2-4 2012

Outline

- Interplay between High-Energy and High-Intensity Physics
- Theoretical Methods:
- Effective Theories (various B decays)
- Lattice-QCD (Form Factors, Unitarity Triangle)
- Light-Cone QCD Sum Rules (won't discuss)
- Isospin, U-spin Symmetries ($\alpha, \gamma, A_{c P}$ in $D \rightarrow \mathrm{~K}^{+} \mathrm{K}^{-}, \pi^{+} \pi^{-}$)

The Standard Model

$S U(3) \times S U(2) \times U(1)$ has been throughly established:
$\mathcal{L}_{\text {Gauge }}=\sum_{\psi, a, b} \bar{\psi}_{a}\left(i \not \partial-g \notin \delta^{a b}\right) \psi_{b}$
Spontaneous EW symmetry breaking via a single Higgs:

$$
\mathcal{L}_{\text {Yukawa }}=\sum_{\psi, a, b} \bar{\psi}_{L a} H Y^{a b} \psi_{R b}=\bar{Q}_{L} H Y_{U} u_{R}+\bar{Q}_{L} H Y_{D} d_{R}+\bar{L}_{L} H Y_{E} E_{R}
$$

- Flavor diagonal neutral currents:

$$
\bar{u}_{L}^{0} Z u_{L}^{0} \Longrightarrow \bar{u}_{L} Z U_{L} U_{L}^{\dagger} u_{L}=\bar{u}_{L} \boldsymbol{Z} u_{L}
$$

- Flavor changing charged currents:

$$
\bar{u}_{L}^{0} W d_{L}^{0} \Longrightarrow \bar{u}_{L} W U_{L} D_{L}^{\dagger} d_{L}=\bar{u}_{L} W V_{\text {CKM }} d_{L}
$$

Predictions are very strong and easily affected by NP

The CKM awesome predictive power

The CKM awesome predictive power

The HIP-HEP tune

(1) High Energy Physics finds new physics around I MeV: $g_{i i} \times f_{T}\left(M_{\mathrm{NP}}\right)$

- High Intensity Physics will tell us couplings and loop structure: $g_{i j} \times f_{L}\left(M_{\mathrm{NP}}\right)$
(2)

Q If HEP doesn't find new physics (besides a standard Higgs), HIP can push the search to much higher scales under the assumptions of not too small flavor
 changing new couplings

Present Status

- Test of the Gauge Structure (LEP,Tevatron)

- Test of the Flavor Sector (BaBar, Belle, LHCb): - inclusive/exclusive V_{ub}
- $\sin (2 \beta)$ vs $B \rightarrow T V$
- Close to a Higgs discovery?
- Muon g-2?
- Is something going on with the charm?

Need for precision calculations and control over theoretical uncertainties

Effective Theories

- The basic idea is to isolate and integrate out heavy degree of freedom:

$$
\begin{aligned}
Z & =\int[d \phi]\left[d \phi_{H}\right] \exp \left(-i \int\left[\mathcal{L}\left(\phi, \phi_{H}\right)+j \phi\right]\right) \\
& =\int[d \phi] \exp \left(-i \int\left[\mathcal{L}_{\mathrm{eff}}(\phi)+j \phi\right]\right)
\end{aligned}
$$

- $\mathcal{L}_{\text {eff }}=\sum C_{i} O_{i}$ admits an expansion in Λ^{-1}, where Λ is the scale associated with ϕ_{H}
- if ϕ_{H} is not an external state, $\Lambda=\mathrm{m}_{\phi}$ appears explicitly in the Wilson coefficients C_{i}
- if ϕ_{H} is an external state, the Λ^{-1} suppression appears dynamically in the calculation of the matrix elements $\left\langle O_{i}\right\rangle$

$b \rightarrow s \ell^{+} \ell^{-}:$a case study

- The effective Hamiltonian is: $\mathcal{H}_{e f f}=-\frac{4 G_{F}}{\sqrt{2}} V_{t s}^{*} V_{t b} \sum_{i=1}^{10} C_{i}(\mu) O_{i}(\mu)$

$$
O_{2}=\left(\bar{s}_{L} \gamma_{\mu} c_{L}\right)\left(\bar{c}_{L} \gamma^{\mu} b_{L}\right)
$$

$$
O_{3}=\left(\bar{s}_{L} \gamma_{\mu} b_{L}\right) \sum\left(\bar{q} \gamma^{\mu} q\right)
$$

$$
O_{9}=\left(\bar{s}_{L} \gamma_{\mu} b_{L}\right) \sum\left(\bar{l} \gamma^{\mu} l\right)
$$

$$
O_{10}=\left(\bar{s}_{L} \gamma_{\mu} b_{L}\right) \sum\left(\bar{l} \gamma^{\mu} \gamma_{5} l\right)
$$

$b \rightarrow s \ell^{+} \ell^{-}:$a case study

Q Inclusive channel:

$$
\left.\Gamma\left[\bar{B} \rightarrow X_{s} \ell^{+} \ell^{-}\right]=\Gamma\left[\bar{b} \rightarrow X_{s} \ell^{+} \ell^{-}\right)\right]+O\left(\frac{\Lambda_{Q C D}^{2}}{m_{b}^{2}}, \frac{\Lambda_{Q C D}^{2}}{m_{c}^{2}}, \ldots\right)
$$

[local OPE, optical theorem, quark-hadron duality]

HQET

- Non-perturbative QCD enters only through few HQET local matrix elements
- The same technique is applied to $B \rightarrow X_{s} \gamma, B \rightarrow X_{c} \ell \nu, B \rightarrow X_{u} \ell \nu$
- Purely leptonic channels are easier to treat ($B \rightarrow \mu \mu, B \rightarrow \tau \nu$ are proportional to the B decay constant)
- Other channels present slightly harder challenges ($B \rightarrow \gamma \ell \nu$ requires the light-cone wave function of the B meson)

$b \rightarrow s \ell^{+} \ell^{-}:$a case study

- Inclusive channel: di-lepton and hadronic invariant mass cuts introduce sensitivity to scales lower than $\mathbf{m}_{\mathbf{b}}$

- eliminate charmonium resonances
- At high-q ${ }^{2}$ the OPE breaks down. Problem is eased by considering:

$$
\frac{\int_{q_{0}^{2}}^{m_{b}^{2}} \mathrm{~d} q^{2} \frac{\mathrm{~d} \Gamma\left(B \rightarrow X_{s} \ell^{+} \ell^{-}\right)}{\mathrm{d} q^{2}}}{\int_{q_{0}^{2}}^{m_{b}^{2}} \mathrm{~d} q^{2} \frac{\mathrm{~d} \Gamma\left(B^{0} \rightarrow X_{u} \ell \nu\right)}{\mathrm{d} q^{2}}}
$$

- remove double semileptonic background
- At low-q ${ }^{2}$ the effects of the M_{x} cut is reduced by considering the ratio:

$$
\frac{\int_{0}^{M_{X}^{\mathrm{cut}}} \mathrm{~d} M_{X} \frac{\mathrm{~d} \Gamma\left(B \rightarrow X_{s} \ell^{+} \ell^{-}\right)}{\mathrm{d} M_{X}}}{\int_{0}^{M_{X}^{\text {cut }}} \mathrm{d} M_{X} \frac{\mathrm{~d} \Gamma\left(B \rightarrow X_{u} \ell \nu\right)}{\mathrm{d} M_{X}}}
$$

$b \rightarrow s \ell^{+} \ell^{-}:$a case study

- Exclusive channels $\left(\mathrm{K}, \mathrm{K}^{*}\right)$:

$$
\mathcal{A}\left(B \rightarrow K^{*} \ell^{+} \ell^{-}\right)=C_{i}(\mu)\left\langle K^{*} \ell^{+} \ell^{-}\right| O_{i}(\mu)|B\rangle
$$

- For operators that contain an explicit photon or di-lepton pair this is trivial

$$
C_{i}(\mu)\left\langle K^{*} \ell^{+} \ell^{-}\right| O_{i}(\mu)|B\rangle=C_{i}(\mu) \bar{\ell} \Gamma_{1}^{i} \ell \underbrace{\left\langle K^{*}\right| \bar{s} \Gamma_{2}^{i} b\left|B\left(p_{B}\right)\right\rangle}_{B \rightarrow K^{*} \text { FormFactor }}
$$

- For all the other operators we must understand the dynamics at scales smaller than m_{b}
- At low q^{2} there are three scales $m_{b}, \sqrt{\Lambda_{Q C D} m_{b}}$ and $\Lambda_{Q C D}$:SCET

$$
\left(p_{\text {soft }}+p_{\text {collinear }}\right)^{2} \sim \Lambda_{\mathrm{QCD}} m_{b}
$$

$b \rightarrow s \ell^{+} \ell^{-}:$a case study

- Matrix elements read:
$\left\langle K_{a}^{*}\right| T\left\{J_{\mathrm{em}}^{\mu} H_{e f f}\right\}|B\rangle=T_{a}^{I}\left(q^{2}\right) \zeta_{a}\left(q^{2}\right)+\sum_{ \pm} \int_{0}^{\infty} \frac{d \omega}{\omega} \phi_{ \pm}^{B}(\omega) \int_{0}^{1} d u \phi_{K^{*}}^{a}(u) T_{a, \pm}^{I I}\left(\omega, u, q^{2}\right)$
hard scattering $\left(\mathrm{m}_{\mathrm{b}}{ }^{2}\right)$
light-cone wave functions (Λ^{2}) hard scattering $\left(\mathrm{mb}^{2}\right)$ jet function $\left(\Lambda \mathrm{m}_{\mathrm{b}}\right)$
- Need two soft form factors: $\xi_{\perp}\left(q^{2}\right), \xi_{\|}\left(q^{2}\right)$
- Need light-cone wave functions of B and light mesons
- At high q^{2} the only scales are three scales m_{b} and $\Lambda_{Q C D}$
- Everything is expressed in terms of form factors at low recoil
- Both approaches are expansions in $\frac{\Lambda_{\mathrm{QCD}}}{m_{b}}$
- At large recoil this is a big problem (higher-twist wave functions, ...)
- At low recoil in principle we can get help from lattice-QCD

$b \rightarrow s \ell^{+} \ell^{-}:$a case study

- Inclusive phenomenology is limited to three quantities $\left(z=\cos \theta_{l}\right)$:

$$
\frac{d^{2} \Gamma}{d q^{2} d z}=\frac{3}{8}\left[\left(1+z^{2}\right) H_{T}\left(q^{2}\right)+2 z H_{A}\left(q^{2}\right)+2\left(1-z^{2}\right) H_{L}\left(q^{2}\right)\right]
$$

- The exclusive K^{*} mode has a very rich structure:

- At low and high recoil, the combinations of l's that have phenomenological relevance are different.
- At high recoil there are ratios that are independent of short distance physics (!!) and allow the extraction of the form factors.

```
\(b \rightarrow s \ell^{+} \ell^{-}:\)a case study
```

- At high recoil there are ratios that are independent of short distance physics (!!) and allow the extraction of the form factors.

Lattice QCD

- 2+ | flavors determinations for most quantities of phenomenological interest
- For the physics I discuss in this talk:
- Ongoing efforts towards the $B \rightarrow K^{*}$) form factors
- $B \rightarrow \pi$ and $B \rightarrow D^{(*)}$ form factors for the extraction of $V_{u b}$ and $V_{c b}$
- K, B and B_{s} decay constants and mixing matrix elements
- For the physics I don't discuss in this talk:
- Progress towards the matrix elements relevant for $\left(\varepsilon^{\prime} / \varepsilon\right)_{K}$
- Progress towards the calculation of the hadronic contribution to $(g-2)_{\mu}$
- ...
- Updated averages ($2+1$ flavors only, including correlations between the results of different collaborations) at: http://www.latticeaverages.org

Lattice QCD

- Ist-2nd family physics: $f_{+}(0)=0.9599 \pm 0.0034_{-0.0045}^{+0.0034} \quad \frac{f_{K}}{f_{\pi}}=1.1925 \pm 0.0056$

Q Determination of $\Delta \Gamma_{s}$. Using an OPE $+\mathrm{HQE}, \Delta \Gamma_{s}$ can be expressed in terms of $f_{B S}$ and the matrix elements of several 4-quarks operators

$$
\begin{aligned}
& Q=\bar{s} \gamma_{\mu}\left(1-\gamma_{5}\right) b \bar{s} \gamma^{\mu}\left(1-\gamma_{5}\right) b \\
& R_{2}=\frac{1}{m_{b}^{2}} \bar{s} \overleftarrow{D}_{\rho} \gamma^{\mu}\left(1-\gamma_{5}\right) D^{\rho} b \bar{s} \gamma_{\mu}\left(1-\gamma_{5}\right) b
\end{aligned}
$$

[leading power]
[subleading power]

Light Cone Sum Rules

$f_{B} f_{B \pi}^{+}\left(q^{2}\right)$
\downarrow
Form Factor
$\sum_{B_{h}} \rightarrow$ duality

Related to $\int T^{(n)} \phi^{(n)}$

- Exclusive from $B \rightarrow D^{*} \mid \boldsymbol{V}$. Using form factor from lattice QCD (2+I dynamical staggered fermions) one finds:

$$
\left|V_{c b}\right|=(39.5 \pm 1.0) \times 10^{-3}
$$

[FNAL/MILC]
[average:Laiho,EL,Van de Water] [exp. error on $B \rightarrow D^{*}$ rescaled to account for the large $X^{2 /} /$ dof $=39 / 2 \mathrm{I}$]

- Inclusive from global fit of $B \rightarrow X_{\mathrm{c}} \mathrm{IV}$ moments.

- Inclusion of $b \rightarrow s \gamma$ has strong impact on quark masses but not on V_{cb}
- NNLO in α_{s} and $O\left(1 / m_{b}^{4}\right)$ known
- $\mathrm{O}\left(\alpha_{s} / \mathrm{m}_{\mathrm{b}}{ }^{2}\right)$ corrections partially known
- Issue of m_{b} is relevant for $V_{u b}$ $\left|V_{c b}\right|=(41.68 \pm 0.73) \times 10^{-3}$
I.7 σ discrepancy between inclusive and exclusive
- Exclusive from $\mathrm{B} \rightarrow$ TIV: $\left|V_{u b}\right|=(3.12 \pm 0.26) \times 10^{-3} \quad \begin{aligned} & {[\text { FNPQCD, }} \\ & \text { FNALMILC] }]\end{aligned}$

$$
\left|V_{u b}\right|=\left(3.50_{-0.33}^{+0.38} \pm 0.11\right) \times 10^{-3}
$$

[Khodjamirian, Mannel, Offen, Wang LCQCDSR]

- Inclusive from global fit of $B \rightarrow X_{u} I V$ moments

Flavor Symmetries

- Avoid QCD dynamics and use QCD symmetries instead:
- Decompose full QCD amplitudes into topological (diagrammatic?) considerations (T, C, E, P, PEW, ...)
- Factor weak phases
- Use Isospin, U-spin, $\operatorname{SU(3)}$ to relate the QCD amplitudes that appear in different modes
- Discuss the size (or include perturbatively the effect) of symmetry breaking corrections

Q This method is especially powerful if

- We don't have a solid enough handle of QCD dynamics
- We have enough experimental data

Q Famous examples are the extraction of α from $B \rightarrow(\pi \pi, \rho \rho, \rho \pi)$ decays and of γ from various $B \rightarrow D^{(*)} K^{(*)}$ modes.

Unitarity Triangle

- The 3.3σ tension in inclusive and exclusive V_{ub} can be resolved only via the inclusion of new right-handed interactions
- The tension between $\sin 2 \beta$ and $B \rightarrow T V$ is easier to address

Unitarity Triangle

Scenario with NP in B mixing

Scenario with NP in $B \rightarrow \tau \nu$

Unitarity Triangle

- Taking V_{ub} seriously:

$$
\begin{array}{ll}
M_{12} & \Longrightarrow M_{12} e^{2 i \phi_{d}} r_{d}^{2} \\
V_{u b} u_{L} W b_{L} & \Longrightarrow V_{u b}\left(u_{L} W b_{L}+\xi_{u b}^{R} u_{R} W b_{R}\right)
\end{array}
$$

$\sin 2 \beta \quad \Longrightarrow \sin 2\left(\beta+\theta_{d}\right)$
$\sin 2 \alpha \quad \Longrightarrow \sin 2\left(\alpha-\theta_{d}\right)$
$\Delta M_{B_{d}} \quad \Longrightarrow \Delta M_{B_{d}} r_{d}^{2}$
$\left|V_{u b}\right|_{\text {incl }} \Longrightarrow \sqrt{1+\left|\xi_{u b}^{R}\right|^{2}}\left|V_{u b}\right|_{\text {incl }}$
$\left|V_{u b}\right|_{\text {excl }} \Longrightarrow\left|1+\xi_{u b}^{R}\right|\left|V_{u b}\right|_{\text {excl }}$
$\mathrm{BR}(B \rightarrow \tau \nu) \Longrightarrow\left|1-\xi_{u b}^{R}\right|^{2} \mathrm{BR}(B \rightarrow \tau \nu)$

$$
\begin{align*}
\xi_{u b}^{R} & =-0.245 \pm 0.055 \\
\theta_{d} & =-(4.8 \pm 1.5)^{\circ} \\
r_{d} & =0.978 \pm 0.041
\end{align*}
$$

CP violation in the D sector?

- LHCb reported results for direct CP asymmetries in $\mathrm{D}^{0} \rightarrow \mathrm{~K}^{+} \mathrm{K}^{-}$and $\mathrm{D}^{0} \rightarrow \pi^{+} \pi^{-}$
- When combined with previous measurements we have a 3.6σ effect:
$\Delta A_{\mathrm{CP}}=a_{K K}^{\mathrm{dir}}-a_{\pi \pi}^{\mathrm{dir}}=(-0.65 \pm 0.18) \%$

Q If taken seriously it is easy to find NP explanations. For instance new contributions to the chromomagnetic operator

$$
\frac{m_{c}}{4 \pi} \bar{u}_{L} \sigma_{\mu \nu} T^{a} g_{s} G_{a}^{\mu \nu} c_{R}
$$

are achievable in the MSSM and can explain the effect
[Grossman, Kagan, Nir, hep-ph/0609I 78]

CP violation in the D sector?

- In the SM the $\mathrm{K}^{+} \mathrm{K}^{-}$and $\pi^{+} \pi^{-}$are related by U-spin symmetry
- Their direct CP asymmetries are due to interference between a real tree amplitude (T_{f}) and a complex penguin one ($P_{f} e^{i\left(\delta_{f}+\gamma\right)}$):

$$
A_{f}^{\mathrm{dir}}=2 \frac{P_{f}}{T_{f}} \sin \delta_{f} \sin \gamma \simeq 2 \frac{P_{f}}{T_{f}}=2 r_{f}
$$

with $f=K^{+} K^{-}, \pi^{+} \pi^{-}$and r_{f} factors in a $\lambda^{4} \sim 10^{-3}$ CKM suppression.

- Using U-spin (there is a relative minus sign between the two modes) one gets:

$$
\Delta A_{C P}=4 r
$$

- Naive order of magnitude and QCD factorization estimates lead to $\mathrm{r} \sim 0.01 \%$
- Need an order of magnitude enhancement of $r=P / T$

CP violation in the D sector?

- A pre-existing anomaly in the branching ratios of these two modes $\left[\mathrm{BR}\left(\mathrm{D}^{0} \rightarrow \mathrm{~K}^{+} \mathrm{K}^{-}\right)=2.8 \mathrm{BR}\left(\mathrm{D}^{0} \rightarrow \pi^{+} \pi^{-}\right)\right]$offers a hint that something is going on

Q Fits to various D^{0} branching ratio (e.g. $D^{0} \rightarrow K^{0} \bar{K}^{0}$ and $D^{0} \rightarrow K^{+} K^{-}$) show that the heavy quark $1 / \mathrm{m}_{c}$ expansion is broken: the W -exchange $\left(E \sim O\left(I / m_{c}\right)\right.$) and tree $(T \sim O(I))$ amplitudes satisfy $E \sim T$.

- Using the E/T experimental ratio as benchmark for the size of power suppressed matrix elements one can show that some formally power suppressed penguin amplitudes are potentially large enough to explain the observed CP asymmetries
[Brod, Kagan, Zupan]
- This is not a SM prediction but just a plausible argument that our theoretical tools (i.e. factorization) don't work well here.
- Using some apt sum-rules it is in principle possible to disentangle NP that contributes to $\Delta I=3 / 2$ operators

Outlook

- Enormous progresses in many channels
- Inclusive $b \rightarrow s$ Il, $b \rightarrow c l v, b \rightarrow u l v, b \rightarrow s \gamma$
- Exclusive $B \rightarrow\left(K, K^{*}, p h i\right) l l$
- Exclusive $B \rightarrow\left(D, D^{*}\right) I V$
- $N_{f}=2+1$ determinations of all matrix elements for UT studies
- Use of symmetries allows sensitivity to weak physics in otherwise hopeless hadronic final states $\left(B \rightarrow \pi \pi, \rho \rho, \rho \pi, D^{(*)} K^{(*)}, \ldots\right)$
- Open problems
- Inclusive (or exclusive!!) b \rightarrow ulv?
- Is the tension in unitarity triangle fits due to some underestimate theoretical or experimental uncertainty?
- Charm remains problematic if we cannot control even the order of magnitude of the SM prediction (note thought: use of isospin symmetry could help disentangle some types of NP)

Back-up slides

Hadronic uncertainties in $S_{\psi K}$

- The small penguin pollution can be extracted in the $\mathrm{SU}(3)$ limit from time-dependent studies of $\underset{\text { [Fleischer] }}{B_{s} \rightarrow \psi} \underset{\text { and }}{\text { [Feischer, Mang, Manel] }}$
- Using a conservative approach about $\mathrm{SU}(3)$ effects one finds:

$$
\left|\Delta S_{\psi K}\right|<0.02
$$

- Quantitative studies based on QCD factorization, PQCD and rescattering effects yield effects that are one order of magnitude smaller
- We conclude that presently one should not use $B \rightarrow \psi \pi^{0}$ decays as sole handle on hadronic uncertainties on $S_{\psi K}$
- Improved measurements of $B \rightarrow \psi \pi^{0}$ (at Belle II/super-B) and of $B_{s} \rightarrow \psi K$ (at LHC-b) will allow to keep this uncertainty under control

UT ${ }_{d}$: inputs

$\left\|V_{c b}\right\|_{\text {excl }}=(39.5 \pm 1.0) \times 10^{-3}$	$\left\|V_{u b}\right\|_{\text {excl }}=(3.12 \pm 0.26) \times 10^{-3}$
$\hat{B}_{K}=0.7674 \pm 0.0099$	$f_{B}=(190.6 \pm 4.7) \mathrm{MeV}$
$\xi \equiv f_{B_{s}} \sqrt{\hat{B}_{s}} /\left(f_{B_{d}} \sqrt{\hat{B}_{d}}\right)=1.237 \pm 0.032$	$f_{B_{s}} \sqrt{\hat{B}_{B_{s}}}=(248 \pm 15) \mathrm{MeV}$
$\kappa_{\varepsilon}=0.94 \pm 0.01$	$\hat{B}_{d}=1.26 \pm 0.11$
$\left\|V_{c b}\right\|_{\text {incl }}=(41.68 \pm 0.44 \pm 0.09 \pm 0.58) \times 10^{-3}$	$\alpha=(89.5 \pm 4.3)^{\circ}$
$\left\|V_{u b}\right\|_{\text {incl }}=\left(4.34 \pm 0.16_{-0.22}^{+0.15} \pm 0.43\right) \times 10^{-3}$	$\gamma=(78 \pm 12)^{\circ}$
$\mathrm{BR}(B \rightarrow \tau \nu)=(1.68 \pm 0.31) \times 10^{-4}$	$S_{\psi K_{S}}=0.668 \pm 0.023$
$\Delta m_{B_{d}}=(0.507 \pm 0.005) \mathrm{ps}^{-1}$	$\eta_{1}=1.87 \pm 0.76$
$\Delta m_{B_{s}}=(17.77 \pm 0.10 \pm 0.07) \mathrm{ps}^{-1}$	$\eta_{2}=0.5765 \pm 0.0065$
$m_{t, p o l e}=(172.4 \pm 1.2) \mathrm{GeV}$	$\eta_{3}=0.494 \pm 0.046$
$m_{c}\left(m_{c}\right)=(1.268 \pm 0.009) \mathrm{GeV}$	$\eta_{B}=0.551 \pm 0.007$
$\varepsilon_{K}=(2.229 \pm 0.012) \times 10^{-3}$	$\lambda=0.2255 \pm 0.0007$
$\left\|V_{c b}\right\|_{\text {avg }}=(40.77 \pm 0.81) \times 10^{-3}$	$\left\|V_{u b}\right\|_{\text {avg }}=(3.37 \pm 0.49) \times 10^{-3}$

- Updated averages on: www.latticeaverages.org [Laiho, EL,Van de Water]

The B_{s} anomaly

- We don't have an official combination - only visual overlay

The B_{s} anomaly

- Eagerly waiting to see what LHCb has to say on the semileptonic asymmetries

The B_{s} anomaly

- The updated LHCb result doesn't allow for a clean interpretation of the tension in the Unitarity Triangle and of the B_{s} anomaly in terms of NP contributions to B and Bs mixing alone [Lenz, Nierste I203.0238]
- Using the parametrization $M_{12}^{q} \equiv M_{12}^{\mathrm{SM}, q} \cdot \Delta_{q}$, the fit with arbitrary complex $\Delta \mathrm{d}$ and $\Delta \mathrm{s}$ still has pulls at the 2.7σ and 2.9σ level for ϕ_{s} and A_{s}

- At last lattice-QCD started to tackle the complex task of calculating $\operatorname{Im}\left[\mathrm{A}_{2}\right]$ and $\operatorname{Im}\left[\mathrm{A}_{0}\right]$ [RBC and UKQCD]
- Taking the error on $\operatorname{Im}\left[A_{2}\right]$ at face value we can use the UT fit and the experimental determination of $\left(\varepsilon^{\prime} / \varepsilon\right)_{K}$ to extract a prediction for \mathbf{B}_{6}

Enrico Lunghi

