Top signals at the LHC

Lian-Tao Wang University of Chicago

Chicago 2012 workshop on LHC physics May 2, 2011

Main message

- Top (bottom) rich channels are the most likely places for new physics to show up.
- It is definitely worth while to exhaust every possibilities.
- I will remind you the main motivations and give a (very partial and sketchy) list of possibilities.
 - Highlights a few new developments.

Measuring the top

Rare decay, spin correlation,
 W helicity...

Top is special

 $- m_{top} \gg m_{u,d,c,s,b}$.

Tight connection with EWSB.

- SM is chiral. Fermions only get mass after Electroweak symmetry breaking.
- (very) Heavy top → top couples strongly to the mechanism of electroweak symmetry breaking.
 - ▶ e.g. large Yukawa coupling yt htltR to the Higgs

Top knows more about the Higgs sector.

- Is there an extended Higgs sector? (likely!)

$$t \rightarrow H^+ b$$

For heavier H^+ , $H^+ \rightarrow t b$

ttbar resonances.

- Special dynamics (new force) → heavy top.
 - New dynamics will create new resonances.
 - Such new resonances couples strongly to the tops.
- Perhaps there is new strong dynamics responsible to EWSB.
 - ▶ Heavy top → strongly couples to EWSB → strongly couples to new dynamics.

ttbar resonances.

- Special dynamics (new force) → heavy top.
 - New dynamics will create new resonances.
 - Such new resonances couples strongly to the tops.
- Perhaps there is new strong dynamics responsible to EWSB.
 - ▶ Heavy top → strongly couples to EWSB → strongly couples to new dynamics.
- Models in this category.
 - Techicolor, deconstruction, composite Higgs, little Higgs,
 - extra-dimension, Randall-Sundrum...

ttbar resonances.

- Special dynamics (new force) → heavy top.
 - New dynamics will create new resonances.
 - Such new resonances couples strongly to the tops.
- Perhaps there is new strong dynamics responsible to EWSB.
 - ▶ Heavy top → strongly couples to EWSB → strongly couples to new dynamics.
- Models in this category.
 - Techicolor, deconstruction, composite Higgs, little Higgs,
 - extra-dimension, Randall-Sundrum...
 a.k.a, anything other than SUSY.

Search for ttbar resonance.

- Generic resonance could also be spin-0, or spin-2.
- Can be broad. Need careful modeling.

Boosted top is also hard to identify.

Heavy resonance decay.

B. Lillie, L. Randall, and LTW, hep-ph/0701166

boosted top taggers

- Jet substructure.
- "Grooming techniques"

Talks by Miller, Rappoccio and Krohn

- Expectation: resonance mass \sim TeVs.

W'→ tb

- Almost as generic as the $X \rightarrow$ ttbar channel.
 - New physics typically comes in with non-trivial SU(2) representation.

Top partner

- Heavy top → largest coupling to the Higgs.
 - Biggest contribution to its mass.

- This is the essential piece of the so-called naturalness or hierarchy problem.
- Any natural theory must introduce top partner.
 - Most anticipated new physics particle.

Top partners.

- Introducing top partners.
 - stop in SUSY, T' in little Higgs, etc.
 - top like states in extra-dim models.
- Another "standard" feature: a discrete parity (Z2)
 - ▶ Good for precision test, flavor, CP.
 - □ R-parity, KK parity, T parity...
 - Dark matter candidate, lightest stable neutral NP state.

Top partner production at 8 TeV

pp→†'†′ Production rate at 8 TeV

PYTHIA parton level

Signal of top partner (without parity).

- Pair production of t' followed by
- $t' \rightarrow Wb$, "heavy top"

Signal of top partner (without parity).

- What about the tZ and tho channels?
- Expected to be there.
 - t'→Wb:tZ:th₀ ≈ 2:1:1 (Goldstone equivalence theorem)
 Perelstein, Peskin, Pierce, 0310039
 - ▶ top-like or b-rich signal.

Signal of top partner, with Z₂ parity.

 $t \bar{t} + \cancel{E}_T$

 $T(\bar{T})$ top partner: \tilde{t} , t^{KK} , t^{T} , ...

 A^0 missing neutral particle: LSP, LKP, LTP, ...

Top partner can have spin 0, 1/2, 1

Difficult due to: limited rate, similar to SM ttbar

Many recent studies. Talk by Reece

A promising scenario.

 $m_{\tilde{t},\tilde{b}} < m_{\tilde{u},\tilde{d}}$

Why considering heavy scalars?

- On general round, scalar tends to be heavier.
 - From Kahler potential, hard to suppress its couplings to SUSY breaking.
 - R-symmetry tends to protect gaugino mass terms.

Why considering heavy scalars?

- On general round, scalar tends to be heavier.
 - From Kahler potential, hard to suppress its couplings to SUSY breaking.
 - R-symmetry tends to protect gaugino mass terms.
- Examples: F-term SUSY breaking.
 - ▶ With R-symmetry broken. But gauginos are sequestered (geometry, etc.) at tree level.
 - Gaugino mass from AMSB.

$$m_{\tilde{q},\tilde{\ell}} \sim m_{2/3}, \quad m_{1/2} \sim \frac{1}{16\pi^2} m_{2/3}$$

Zprime-ino mediation.

- Gaugino mediation through an extra U(1)'

$$\int d^2\theta \frac{X}{M} W_{Z'} W_{Z'} \to m_{\tilde{Z}'} = \frac{F_X}{M}$$

$$m_{\tilde{q},\tilde{\ell}}^2 \sim \frac{g_{Z'}^2}{16\pi^2} \frac{F_X^2}{M^2}, \quad m_{1/2}^{\text{MSSM}} \sim \frac{g^2 g_Z'^2}{(16\pi^2)^2} \frac{F_X}{M}$$

$$\frac{m_{\rm scalar}}{m_{\rm MSSM\ gaugino}} \sim (4\pi)^3$$

Langacker, Paz, LTW, Yavin, 0710.1632, Verlinde, LTW, Wijnholt, Yavin, 0711.3214

Heavy scalar benefits.

- Better consistency with constraints:
 - ▶ flavor, CP: $\infty 1/(16\pi^2 \text{ m}^2_{\text{squark}})$
 - Higgs mass (125?) in MSSM:
 ≈ m_Z^2 + 3/(2π²) |y_t m_t|² log[(m_{stop})/m_t]
- Fine with EWSB.

Feldman, Kane, Kuflik, Lu, 1105.3765

 $\frac{}{} \qquad \qquad \tilde{u}, \ \tilde{d}, \ \dots \\ \tilde{t}, \ \tilde{b}$

- RGE.

$$\frac{dm_{\tilde{t},\tilde{b}}^2}{dt} = \frac{1}{16\pi^2} |y_{t,b}|^2 (m_{H_{u,d}}^2 + m_{Q_3}^2 + m_{\tilde{t}_R,\tilde{b}_R}^2) + \dots$$

 $\frac{\tilde{u}, \ \tilde{d}, \ \dots}{\tilde{t}, \ \tilde{b}}$

- RGE.

$$\frac{dm_{\tilde{t},\tilde{b}}^2}{dt} = \frac{1}{16\pi^2} |y_{t,b}|^2 (m_{H_{u,d}}^2 + m_{Q_3}^2 + m_{\tilde{t}_R,\tilde{b}_R}^2) + \dots$$

same as 1, 2 gen.

 $\frac{\tilde{u}, \ \tilde{d}, \ \dots}{\tilde{t}, \ \tilde{b}}$

- RGE.

$$\frac{dm_{\tilde{t},\tilde{b}}^2}{dt} = \frac{1}{16\pi^2} |y_{t,b}|^2 (m_{H_{u,d}}^2 + m_{Q_3}^2 + m_{\tilde{t}_R,\tilde{b}_R}^2) + \dots$$

 $\frac{\tilde{u}, \ \tilde{d}, \ \dots}{\tilde{t}, \ \tilde{b}}$

- RGE.

$$\frac{dm_{\tilde{t},\tilde{b}}^2}{dt} = \frac{1}{16\pi^2} |y_{t,b}|^2 (m_{H_{u,d}}^2 + m_{Q_3}^2 + m_{\tilde{t}_R,\tilde{b}_R}^2) + \dots$$

same as 1, 2 gen.

Recent Models (partial list)

- Langacker, Paz, LTW, Yavin, 0710.1632
- Verlinde, LTW, Wijnholt, Yavin, 0711.3214
- Acharya, Bobkov, Kane, Kumar, 0801.0478
- Nakamura, Okumura, Yamaguchi, 0803.3725
- Everett, Kim, Ouyang, Zurek, 0806.2330
- Hackman, Vafa, 0809.3452
- Sundrum, 0909.5430
- Barbieri, Bertuzzo, Farina, Lodone, Rappadopulo,
 1004.2256

A promising, and complicated, scenario.

Kane, Kuflik, Lu and LTW, 1101.1963

> TeV
$$= \underbrace{ \begin{array}{c} \tilde{u}, \ \tilde{d}, \ \dots \\ \tilde{t}, \ \tilde{b} \end{array} }_{\tilde{g}}$$

$$\sim 100 \text{s GeV} = \underbrace{ \begin{array}{c} \tilde{u}, \ \tilde{d}, \ \dots \\ \tilde{t}, \ \tilde{b} \end{array} }_{\tilde{g}}$$

The Dominant channel

$$p \ p \to \tilde{g}\tilde{g} \to t\bar{t}t\bar{t}(\text{or } t\bar{t}bb, \ t\bar{t}tb \dots)$$

 $\tilde{g} \to t\bar{t}(b\bar{b}) + \tilde{N}, \text{ or } t\bar{b} + \tilde{C}^- \quad t \to b\ell^+\nu$

- Multiple b, multiple lepton final state.
 - Good early discovery potential.
 - Challenging to interpret: top reconstruction difficult.

A promising, and complicated, scenario.

Kane, Kuflik, Lu and LTW, 1101.1963

> TeV
$$\frac{\tilde{u}, \tilde{d}, \dots}{\tilde{t}, \tilde{b}}$$

$$\frac{\tilde{v}, \tilde{b}}{\tilde{v}}$$

$$\frac{\tilde{v}, \tilde{b}}{\tilde{v}}$$

$$\frac{\tilde{v}, \tilde{b}}{\tilde{v}}$$

$$\frac{\tilde{v}, \tilde{b}}{\tilde{v}}$$

$$\frac{\tilde{v}, \tilde{b}}{\tilde{v}}$$

The Dominant channel

$$p \ p \to \tilde{g}\tilde{g} \to t\bar{t}t\bar{t}(\text{or } t\bar{t}bb, \ t\bar{t}tb \dots)$$

 $\tilde{g} \to t\bar{t}(b\bar{b}) + \tilde{N}, \text{ or } t\bar{b} + \tilde{C}^- \quad t \to b\ell^+\nu$

- Multiple b, multiple lepton final state.
 - Good early discovery potential.
 - Challenging to interpret: top reconstruction difficult.

Quite a few recent searches
Signal similar to [gluino→on-shell stop], talk by Reece

Another multi-top signal: top compositeness

Lillie, Shu, Tait, 0712.3057

Pomarol, Serra, 0806.3247

- Top quark tends to couple more with the new physics (by mixing with top partner for example).
 - Shifts its properties.

- Top quark tends to couple more with the new physics (by mixing with top partner for example).
 - Shifts its properties.
- Come with bottom partner. $b' \rightarrow b(t) + X$

- Top quark tends to couple more with the new physics (by mixing with top partner for example).
 - Shifts its properties.
- Come with bottom partner. $b' \rightarrow b(t) + X$
- Exotic top decay, e.g., $t \rightarrow Zq$.

- Top quark tends to couple more with the new physics (by mixing with top partner for example).
 - Shifts its properties.
- Come with bottom partner. $b' \rightarrow b(t) + X$
- Exotic top decay, e.g., $t \rightarrow Zq$.
- Top couplings to W, deviation from V-A.

- Top quark tends to couple more with the new physics (by mixing with top partner for example).
 - Shifts its properties.
- Come with bottom partner. $b' \rightarrow b(t) + X$
- Exotic top decay, e.g., $t \rightarrow Zq$.
- Top couplings to W, deviation from V-A.
- 3rd generation related FCNC. V_{tb}...

- Top quark tends to couple more with the new physics (by mixing with top partner for example).
 - Shifts its properties.
- Come with bottom partner. $b' \rightarrow b(t) + X$
- Exotic top decay, e.g., $t \rightarrow Zq$.
- Top couplings to W, deviation from V-A.
- 3rd generation related FCNC. V_{tb}...
- 4th generation (motivated by the first 3).

Top can give us surprises.

It is the least tested sector

For example: Top AFB

- Motivated by potential experimental evidence.

- Many studies and models.

Two classes of Models.

- S-channel. Large couplings. "work"s.
- G: 1-2 TeV or 400 GeV.
- ttbar resonance search.

- t-channel. Large couplings.
 "work"s. Flavor "structure".
- $O(10^2)$ s GeV mediator.
- tqq resonances.

At the LHC.

- AFB measurement less direct, but possible.
- However,
 - ▶ All models are designed to give large AFB and barely consistent with other Tevatron ttbar data.
 - ☐ Surprising if nature works this way.
 - \blacktriangleright At the LHC, with the large increase of E_{cm} , can not stay hidden anymore.
 - Current LHC data should already give strong constraints.

Various tests of models

- New resonance searches (Kim, Gresham, Zurek (2011); Hewett, Shelton et al (2011))
- Same sign top pair production: t-channel Z' model (Berger et. al. (2011))
- Excesses in ttbar and single t production (Aguilar-Saavedra, Perez-Victoria (2011); Gedalia et al (2011); Degrande et al (2011))
- ☑ Top polarization: measure chiral structure (D. Krohn, Tao Liu, J. Shelton, LTW (2011); Godbole et. al.; Choudhury et. al. (2010); V. Barger et. al (2011))
- Non-SM spin-correlation of top pair: distinguish s- and t-channel models (D. Krohn, Tao Liu, J. Shelton, LTW (2011))

Will be covered later in the workshop: talk by Zupan

Top polarization as a probe of NP.

- New physics typically gives different top polarizations.
 - e.g. some AFB model prefers right-handed couplings.
- Direct measurement of polarization after accurate reconstruction.
 - Powerful, probably need larger statistics.

(semi)Lepton asymmetry

$$\mathcal{A}_{FB}^{\ell} = rac{N(q_{\ell}y_{\ell}>0)-N(q_{\ell}y_{\ell}<0)}{N(q_{\ell}y_{\ell}>0)+N(q_{\ell}y_{\ell}<0)}$$

frame and	$tar{t}$	Lepton	stat. sig.
mass range	asymmetry	asymmetry	(5.3 fb^{-1})
G_A lab, sel. cuts	9 %	4 %	1.1
lab, $m_{t\bar{t}} > 450 \text{ GeV}$	17 %	9 %	1.9
CM, sel. cuts	12 %	6 %	1.7
CM , $m_{t\bar{t}} > 450 \text{ GeV}$	19 %	12 %	2.4
G_L lab, sel. cuts	7 %	-3 %	0.9
lab, $m_{t\bar{t}} > 450 \text{ GeV}$	14 %	-1 %	0.2
CM, sel. cuts	13 %	-4 %	1.4
CM , $m_{t\bar{t}} > 450 \text{ GeV}$	20%	-3 %	0.6
G_R lab, sel. cuts	9 %	12 %	3.9
lab, $m_{t\bar{t}} > 450 \text{ GeV}$	14 %	18 %	5.0
CM, sel. cuts	9 %	16 %	3.5
CM , $m_{t\bar{t}} > 450 \text{ GeV}$	15 %	22 %	4.4
W' lab, sel. cuts	15 %	13 %	3.9
lab, $m_{t\bar{t}} > 450 \text{ GeV}$	26 %	22 %	4.9
CM, sel. cuts	20 %	16 %	4.4
CM , $m_{t\bar{t}} > 450 \text{ GeV}$	31 %	26 %	5.3

- Nice performance on G_R and W'.
- CM frame asym.
 better, but lab
 frame asym.
 already useful.
- G_L, G_A models are more difficult. But can improve with full data set.

D. Krohn, Tao Liu, J. Shelton, LTW (2011)

Conclusions.

- Top rich final states are well motivated in search for BSM NP.
 - ▶ I would argue it is the place to look for NP.
- In this talk
 - ▶ Top Higgs connection
 - ttbar resonances.
 - ▶ Top partner.
 - ▶ ttbar AFB.
- More possibilities. Can have surprises.

extras

Benchmark models

- Reference models.

<u></u>		_						- 1
Model	M [TeV]	Γ [TeV]	g_1^A	g_1^V	g_3^A	g_3^V	g^A	g^V
G_A	2.0	1.40	-2.3	0.0	3.35	0.0	/	/
G_L	2.0	1.40	-2.3	0.0	3.35	3.35	/	/
G_R	2.0	1.40	-2.3	0.0	3.35	-3.35	/	/
W'	0.40	0.04	/	/	/	/	-0.90	0.90

Model	$\sigma_{tt}^{ m Tevatron}[m pb]$	$\sigma_{tt}^{ m LHC}[m pb]$	A_{fb}^{Tevatron}
SM	5.6	89	0%
G_A	5.8	91	14%
G_L	6.1	95	13%
G_R	6.1	95	13%
W'	7.3	123	24%

- Our simulation
 - Madgraph + Pythia + PGS.

Using leptons

- Charge leptons
 "follows" the
 direction of top.
 Probes AFB.
- (left) rightpolarizated top
 leads to
 (anti)boosted
 leptons. Probes
 chiral coupling.

red: RH, blue: LH, black: SM

(di)leptonic asymmetry

$$\mathcal{A}_{FB}^{\Delta \ell} = \frac{N((y_{\ell^+} - y_{\ell^-}) > 0) - N((y_{\ell^+} - y_{\ell^-}) < 0)}{N((y_{\ell^+} - y_{\ell^-}) > 0) + N((y_{\ell^+} - y_{\ell^-}) < 0)}$$

mass	asymmetry	stat.
range	(5.1 fb^{-1})	sig.
$\overline{G_A}$ sel. cuts	8 %	1.2
$m_{t\bar{t}} > 450 \text{ GeV}$	14 %	1.4
$\overline{G_L}$ sel. cuts	-4 %	0.5
$m_{t\bar{t}} > 450 \text{ GeV}$	1 %	0
G_R sel. cuts	15 %	2.4
$m_{t\bar{t}} > 450 \text{ GeV}$	20 %	2.1
W' sel. cuts	15 %	2.3
$m_{t\bar{t}} > 450 \text{ GeV}$	24 %	2.6

- Useful and complementary to the semileptonic mode, especially with the full data set.

Top partner reach, 14 TeV, 100 fb⁻¹

Polarization: LHC
$$\mathcal{P}_n = \frac{N(\cos\theta_{\ell,n} > 0) - N(\cos\theta_{\ell,n} < 0))}{N(\cos\theta_{\ell,n} > 0) + N(\cos\theta_{\ell,n} < 0))}$$

Select helicity basis as the polarization axis

	$G_A(\%)$	$G_L(\%)$	$G_R(\%)$	W'(%)	SM(%)
Selection cuts	1	-1	4	18	$1 (\pm 1.2)$
$m_{t\bar{t}} > 450 \text{ GeV}$	2	-2	6	26	$0 (\pm 1.7)$
$ y(t) + y(\bar{t}) > 2$	0	-4	3	19	$-2 \ (\pm 3.2)$

Select beam basis as the polarization axis

	$G_A(\%)$	$G_L(\%)$	$G_R(\%)$	W'(%)	SM(%)
Selection cuts	4	-1	5	9	$2(\pm 1.2)$
$m_{t\bar{t}} > 450 \text{ GeV}$	1	-4	4	11	$0 (\pm 1.7)$
$ y(t) + y(\bar{t}) > 2$	2	-5	7	15	1 (±3.2)

- The GR and W' models can be distinguished from the SM at a C.L. > 3 sigma in the helicity basis
- Market The left-chiral, right-chiral models and the SM can be distinguished from each other at a C.L. > 2 sigma in the beam basis

See our paper for more details

Top as testing ground.

- Top is heavy, gives new physics-like signals.
 - With high multiplicity final state.
 - With jets, lepton and MET.
- Headache for new physics discovery.
 - ▶ Important to understand it very well.
- Good testing ground for many kinematical variables, reconstruction techniques.
 - MT2 and its descendants

A recent example

Barr, Konar, Kong, Lester, Matchev, Park I 108.5182

- Such variables are crucial in discovery and reconstruction of NP.
- They can be affected by additional radiation, etc.
 - More tests.

Superstructure

Relative enhanced radiation consentration

- Using more global information.
- Applications to other channels as well.
- Not very well modeled by MC, exp. test crucial.

W→ jets in ttbar

- part of ttbar events
 - ▶ Good (statistics) sample of singlet→dijet.
- Sensitive to higher level of pile-up.

Examples.

- F-term breaking, with R-symmetry preserved.

$$\begin{split} W &= \mu^2 X + ..., \quad K = X X^\dagger + \frac{(X X^\dagger)^2}{M^2} + ... \\ R[X] &= 2, \quad F_X = \mu^2, \quad \langle X \rangle = 0 \\ \int d^4 \theta \frac{X X^\dagger}{M^2} Q^\dagger Q \to m_{\tilde{Q}}^2 = \frac{\mu^4}{M^2} \\ \int d^4 \theta \frac{X X^\dagger}{M^3} W_\alpha W^\alpha r \to m_{1/2} = \frac{\mu^4}{M^3} r \qquad \text{r: additional R-symm breaking spurion} \end{split}$$

- Similar story for D-term breaking.