Theoretical uncertainties on cross sections in jet bins

Frank Petriello

Chicago 2012 Workshop on LHC Physocs May 2, 2012

Outline

- •Will focus on Higgs as an example of a search needing jet vetos
- Intro: why are jet vetos needed and dangerous
- Past ways for estimating theoretical uncertainties
- New calculations and results

The Higgs search today

- Tevatron excess driven by bbar channel
- LHC primarily \u00e4\u00b6

The need for accurate theory

Discovery is not a simple peak in many channels; detailed knowledge of signal shape desirable

(Carena, Low, Wagner; from C. Wagner, MCTP 2012)

Precision measurement of Higgs properties will be critical in mapping out underlying theory

Effects of theory uncertainties

•CMS PAS HIG-I I-024: (WW channel) "The overall signal efficiency uncertainty... is dominated by the theoretical uncertainty due to missing higher-order corrections"

Affected Processes

•ATLAS CERN-PH-EP-2012-013 ($\gamma\gamma$): uncertainties due to QCD scale variation one of the two dominant systematic effects (along with photon reconstruction+ID efficiency)

from G. Rolandi, HCP 2011

Source	Affected Processes	Typical uncertainty	
$PDFs+\alpha_s$	$gg \rightarrow H, \ t\overline{t}H, \ gg \rightarrow VV$	±8%	
(cross sections)	VBF H, VH, VV @NLO	±4%	
Higher-order	total inclusive $gg \rightarrow H$	+12 % -7 %	
uncertainties	inclusive " gg " $\rightarrow H + \geq 1$ jets	±20%	
on cross	inclusive " $gg" \rightarrow H + \geq 2$ jets	±20% (NLO), ±70% (LO)	
sections	VBFH	11%	
	associated VH	±1%	
	t ar t H	+4 % -10 %	
	uncertainties specific to high mass Higgs boson, see Section 2.1	±30%	
	V	±1%	
	VV up to NLO	±5%	
	$gg \rightarrow VV$	±30 %	
	$t\bar{t}$, incl. single top productions for simplicity	±6%	
acceptance	acceptance for $H \to WW \to \ell\nu\ell\nu$ events	±2%	
phenomenology	modelling of underlying event and parton showering	±10 %	
	fake lepton probability $(W + jets \rightarrow \ell \ell^{fake})$	±40%	
luminosities	ATLAS and CMS uncertainties on their luminosity measurements	$\pm 3.7\%\;,\pm 4.5\%$	

Source

Typical uncertainty

Why jet vetoes?

- Vital component of Higgs searches
- Required in WW channel due to background composition
- 0, I-jet bins WW continuum
- •2-jet bin ttbar
- •25 GeV (ATLAS) or 30 GeV jet cut (CMS)

Why are jet vetoes dangerous?

- •Illustrate with simple example of e⁺e⁻→jets
- Infrared safety: must sum both virtual and real corrections

Virtual corrections: - I/ε_{IR}

Real corrections: I/ϵ_{IR} - $In^2(Q/p_{T,cut})$

- •Incomplete cancellation of IR divergences in presence of final state restrictions gives rise to large logarithms of restricted kinematic variable
- •Relevant log term for Higgs searches: $6(\alpha_S/\pi)\ln^2(M_H/p_{T,veto})\sim 1/2 \Rightarrow potentially$ a large correction

Other variables

- •The jet-vetoed cross section dependence on the jet algorithms makes it difficult to study with standard analytic resummation techniques
- Often rely on other, simpler variables which behave similarly for intuition

- •p_T of the Higgs is the same as a jet veto through relative order $O(\alpha_S)$
- •Known to NNLL+NLO in HqT de Florian, Ferrera, Grazzini, Tommasini 2011

Theoretical uncertainties on cross sections in jet bins

Other variables

- •The jet-vetoed cross section dependence on the jet algorithms makes it difficult to study with standard analytic resummation techniques
- Often rely on other, simpler variables which behave similarly for intuition

$$\mathcal{T}_{\rm cm} = \sum_{k} |\vec{p}_{kT}| e^{-|\eta_k|}$$

- •Beam thrust qualitatively similar in that it vetoes hard, central jets
- Known to NNLL Berger, Marcantonini, Stewart, Tackmann, Waalewijn 2010

Standard tools

- •Experimental studies typically use NLO+PS tools such as POWHEG or MC@NLO to get efficiencies for jet bins
- These can have very large uncertainties for exactly the interesting variables

- What exactly is stuck up in the exponent in the various codes modifies the pT spectrum
- Matching to HqT needed to ameliorate these differences
- •Furthermore, often rely on fixedorder QCD to estimate theoretical error (argued in literature that 25-30 GeV suitably described by fixed-order)

Fixed-order scale variation

- •Inclusive scale variation 10%; with a 25 GeV jet veto, 5-6%!
- •Having $\Delta\sigma_{\text{veto}} < \Delta\sigma_{\text{tot}}$ doesn't seem correct; σ_{veto} has a more complicated structure and a larger expansion parameter, α_{S} $\ln^2(m_H/p_{T,\text{cut}})$ rather than α_{S}

Cancellations

Study of cross section structure (Stewart, Tackmann 2011)

$$\sigma_{0}(p^{\text{cut}}) = \sigma_{\text{total}} - \sigma_{\geq 1}(p^{\text{cut}})$$

$$\simeq \sigma_{B} \Big\{ [1 + \alpha_{s} + \alpha_{s}^{2} + \mathcal{O}(\alpha_{s}^{3})] - [\alpha_{s}(L^{2} + L + 1) + \alpha_{s}^{2}(L^{4} + L^{3} + L^{2} + L + 1) + \mathcal{O}(\alpha_{s}^{3}L^{6})] \Big\}$$

$$\sigma_{\text{total}} = (3.32 \text{ pb}) [1 + 9.5 \alpha_{s} + 35 \alpha_{s}^{2} + \mathcal{O}(\alpha_{s}^{3})] ,$$

$$\sigma_{\geq 1} \Big(p_{T}^{\text{jet}} \geq 30 \text{ GeV}, |\eta^{\text{jet}}| \leq 3.0 \Big) = (3.32 \text{ pb}) [4.7 \alpha_{s} + 26 \alpha_{s}^{2} + \mathcal{O}(\alpha_{s}^{3})] .$$

- •Jet-vetoed cross section is the difference between two cross sections with large corrections ($C_A \pi^2$ and threshold logs for inclusive, jet-veto logs for $\sigma_{\geq 1}$)
- •Accidental cancellation between large corrections to total cross section and logarithms, leading to reduced scale error. No reason to persist at higher orders

Explicit demonstration

•Further evidence: three ways of extending the calculation of the 0-jet event fraction that differ by $O(\alpha_S^3)$ w.r.t. leading order

$$\epsilon^{(a)}(p_{\rm t,veto}) \equiv \frac{\Sigma_0(p_{\rm t,veto}) + \Sigma_1(p_{\rm t,veto}) + \Sigma_2(p_{\rm t,veto})}{\sigma_0 + \sigma_1 + \sigma_2}$$

(keep all known terms in top and bottom)

$$\epsilon(p_{\rm t,veto}) = 1 - \frac{\sigma_{\rm 1-jet}^{\rm NLO}(p_{\rm t,veto})}{\sigma_0 + \sigma_1}$$

(perturbative series for jet-vetoed results really begins at relative $O(\alpha_s)$ w.r.t. inclusive)

$$\epsilon^{(c)}(p_{\rm t,veto}) \equiv 1 + \frac{\bar{\Sigma}_1(p_{\rm t,veto})}{\sigma_0} + \left(\frac{\bar{\Sigma}_2(p_{\rm t,veto})}{\sigma_0} - \frac{\sigma_1}{\sigma_0^2}\bar{\Sigma}_1(p_{\rm t,veto})\right)$$

(strict expansion to $O(\alpha_s^2)$)

Banfi, Salam, Zanderighi 2012

•Give results differing from 0.5 to 0.85 for a 25-30 GeV cuts

Error prescription

•A solution to better estimate error using fixed-order results pointed out (Stewart, Tackmann 2011)

- •In the limit of $ln(m_H/p_{T,cut})$ large, σ_{tot} and $\sigma_{\geq 1}$ have independent expansions
- •Gives expected result, that $\Delta \sigma_{\text{veto}} > \Delta \sigma_{\text{tot}}$
- The current prescription used in LHC analyses (phrased in terms of jet fractions)

First consider inclusive jet cross sections

$$\sigma_{ ext{total}}, \, \sigma_{\geq 1}, \, \sigma_{\geq 2} \quad \Rightarrow \quad C = egin{pmatrix} \Delta_{ ext{total}}^2 & 0 & 0 \ 0 & \Delta_{\geq 1}^2 & 0 \ 0 & 0 & \Delta_{\geq 2}^2 \end{pmatrix}$$

Transform to exclusive jet cross sections

$$\sigma_0 = \sigma_{ ext{total}} - \sigma_{\geq 1} \,, \qquad \sigma_1 = \sigma_{\geq 1} - \sigma_{\geq 2} \,, \qquad \sigma_{\geq 2} \,,$$
 $\Rightarrow \quad C = egin{pmatrix} \Delta^2_{ ext{total}} + \Delta^2_{\geq 1} & -\Delta^2_{\geq 1} & 0 \ \Delta^2_{\geq 1} + \Delta^2_{\geq 2} & -\Delta^2_{\geq 2} \ 0 & -\Delta^2_{\geq 1} & \Delta^2_{\geq 2} \end{pmatrix}$

cut	$rac{\Delta \sigma_{ m total}}{\sigma_{ m total}}$	$\frac{\Delta\sigma_{\geq 1}}{\sigma_{\geq 1}}$	$\left \frac{\Delta\sigma_{\geq 2}}{\sigma_{\geq 2}}\right $	$\left \frac{\Delta\sigma_0}{\sigma_0}\right $	$\frac{\Delta\sigma_1}{\sigma_1}$
$p_T^{\mathrm{cut}} = 30\mathrm{GeV}, \eta^{\mathrm{cut}} = 3$	10%	21%	45%	17%	29%

NLL resummation for jet veto

Very recent numerical NLL resummation of the jet-vetoed cross section

Banfi, Salam, Zanderighi 2012

•Errors not much reduced from those estimated using previous prescription (error defined here as a combination of usual scale variation, and the envelope of methods a, b, c from before)

NLL resummation for jet veto

- •Can't use HqT reweighted POWHEG to estimate uncertainty!
- Central also value off by 10-15%; this should enter experimental studies

Data tests of calculations

- •The same issues do not affect W/Z production; both C_F instead of C_A as for Higgs, and tiny NLO→NNLO shift for W/Z
- Worth thinking about top, which is gg-initiated (although with a much better behaved inclusive cross section)

Conclusions

- Have discussed new work on how to treat jet vetos theoretically
- Better way to estimate uncertainty on fixed-order results
- •New NLL resummation of the jet-vetoed Higgs signal; should propagate to experimental studies
- Worth thinking about cross-checks in other channels

Jet fractions

•Can be easily translated to be in terms of fractions of events in 0, 1, 2 jet bins

$$\begin{split} \delta(f_0)^2 &= \left(\frac{1}{f_0} - 1\right)^2 \left(\delta_{\text{total}}^2 + \delta_{\geq 1}^2\right), \\ \delta(f_1)^2 &= \delta_{\text{total}}^2 + \left(\frac{1 - f_0}{f_1}\right)^2 \delta_{\geq 1}^2 + \left(\frac{1 - f_0}{f_1} - 1\right)^2 \delta_{\geq 2}^2, \\ \rho(f_0, \sigma_{\text{total}}) &= \left[1 + \frac{\delta_{\geq 1}^2}{\delta_{\text{total}}^2}\right]^{-1/2}, \\ \rho(f_1, \sigma_{\text{total}}) &= -\frac{\delta_{\text{total}}}{\delta(f_1)}, \\ \rho(f_0, f_1) &= -\left(1 + \frac{1 - f_0}{f_1} \frac{\delta_{\geq 1}^2}{\delta_{\text{total}}^2}\right) \left(\frac{1}{f_0} - 1\right) \frac{\delta_{\text{total}}^2}{\delta(f_0)\delta(f_1)}. \end{split}$$