CMS : Searches for SUSY & New Physics using Heavy Flavour

Richard Cavanaugh, Fermilab / UIC

Chicago 2012 Workshop 02 May, 2012

New Physics & Heavy Flavour

- We do not understand Flavour in the Standard Model!
 - · Perhaps most perplexing conundrum of all
 - · It's why we built all of the b-factories!
- Flavour intimately tied with EWSB through Yukawas
 - · defines a special role for heavy flavour!
- Supersymmetry and EWSB seem to be related
 - · at least via the hierarchy problem
 - · Limits Heavy Flavour sparticle masses
 - · perhaps also through RGEs
- Other Reasons to search for New Physics with Heavy Flavour
 - · Number of generations? Is there a Heavy 4th?
- Lot of interest in Searches for New Physics using Heavy Flavour

🛠 Fermilab

From tau's to tau-jets

From b's to b-jets

From tops to...


```
LPC
LHC Physics Center
```


Datasets and Reconstruction

Fermilab

C University of Illinois at Chicago

CMS

Key:

Datasets and Reconstruction **C** University of Illinois

Datasets and Reconstruction

8 16.03.2012

Key:

Fermilab

C University of Illinois

Hierarchy Problem

 $Sm_{h}^{2} \sim \frac{3\lambda_{t}^{2}}{8\pi^{2}} \Lambda_{vv}^{2} \left(-3\Lambda_{vv}\right)^{2}$)----h h -> For mh~ 120 GeV, need new colored "top partners" beneath ~ 400 GeV.

Nima Arkni-Hamid Implications of LHC Workshop 31 October, CERN

Also R. Barbieri, A. Weiler, etc, etc

<u>SU</u>SY

Hierarchy Problem

 $\int m_h^2 \sim \frac{3 \lambda_t^2}{8 \pi^2} \Lambda_{vv}^2 \left(\cdot 3 \Lambda_{vv} \right)^2$)----h h -> For mh~ 120 GeV, need new colored "top partners" beneath ~ 400 GeV.

Also need Gluino For mining 5400 GeV to be natural:

Nima Arkni-Hamid Implications of LHC Workshop 31 October, CERN

Also R. Barbieri, A. Weiler, etc, etc

SUSY

Hierarchy Problem

()----h ----{ -> For mh~ 120 GeV, need new colored "top partners" beneath ~ 400 GeV.

Also need Gluino For mZ 5400 GeV to be natural:

Nima Arkni-Hamid Implications of LHC Workshop 31 October, CERN

Also R. Barbieri, A. Weiler, etc, etc

11 16.03.2012 SUS-11-006

11 16.03.2012 SUS-11-006

Backgro	
 Define signal winde Δφ^{min} > 40 	Strategy
 ● Loose ∉ Tight sig Apply ABCD method f sidebands	hal regions
	control

CN

MET and b-jets

 $L_{int} = 1.1 \text{ fb}^{-1}, \sqrt{s} = 7 \text{ TeV}$

CMS Preliminary

MET and b-jets

 $L_{int} = 1.1 \text{ fb}^{-1}, \sqrt{s} = 7 \text{ TeV}$

CMS Preliminary

 $L_{int} = 1.1 \text{ fb}^{-1}, \sqrt{s} = 7 \text{ TeV}$

CMS Preliminary

MET and b-jets

 $L_{int} = 1.1 \text{ fb}^{-1}, \sqrt{s} = 7 \text{ TeV}$

CMS Preliminary

Strategy

- stransverse mass as discriminator
 - Endpoint at parent mass
 - Force event in hemispheres; assume M(LSP)=0
- · Require
 - ≥ 1 b-tagged jet
 - 2 4 jets (150, 40, 40, 40)
 - MT2 > 125
 - HT > 750, HT > 950

$$(M_{T2})^2 = 2 \ p_T^{vis(1)} p_T^{vis(2)} (1 + \cos \phi_{12})$$

Strategy

- stransverse mass as discriminator
 - Endpoint at parent mass
 - Force event in hemispheres; assume M(LSP)=0

· Require

- ≥ 1 b-tagged jet
- 2 4 jets (150, 40, 40, 40)
- MT2 > 125
- HT > 750, HT > 950

SUS-11-016 SUS-12-002

Strategy

- stransverse mass as discriminator
 - Endpoint at parent mass
 - Force event in hemispheres; assume M(LSP)=0

· Require

- ≥ 1 b-tagged jet
- 2 4 jets (150, 40, 40, 40)
- MT2 > 125
- HT > 750, HT > 950

Strategy

• SM backgrounds highly suppressed. Challenge is to measure fake leptons!

strategy

- SM backgrounds highly suppressed. Challenge is to measure fake leptons!
- Two data-driven methods
 - B tag-and-probe method
 - "Tight-Loose" method

Strategy

- SM backgrounds highly suppressed. Challenge is to measure fake leptons!
- Two data-driven methods
 - B tag-and-probe method
 - "Tight-Loose" method
- Define Signal Regions in MET & HT

‡Fermilab University of Illinois at Chicago

505-22-020

- Similar to SS dilepton analysis: just add 2 b-tagged jets
- Fake lepton background from b's dramatically smaller!
- top contribution expected to decrease by factor of 2!
- More exclusive search
 - same-sign top production
 - SUSY 4 top final states
 - SUSY sbottom pair production
 - SUSY 464W final states

505-22-020

- Similar to SS dilepton analysis: just add 2 b-tagged jets
- Fake lepton background from b's dramatically smaller!
- top contribution expected to decrease by factor of 2!

a Hana a			- · ·	,					
& MORE E		SR1	SR2	SR3	SR4	SR5	SR6	SR7	5 5
o Same	No. of jets	≥ 2	≥ 2	≥ 2	≥ 2	≥ 2	≥ 2	≥ 3	NEW
· SUSY	No. of btags	\geq 2	≥ 2	≥ 2	≥ 2	≥ 2	≥ 2	≥ 3 /	Trans
	Lepton charges	+ + /	++	++/	+ + /	++/	+ + /	++/	
© 3037	\mathbb{Z}_{T}	$\geq 30~{ m GeV}$	$\geq 30~GeV$	$\geq 120 \text{ GeV}$	$\geq 50 \mathrm{GeV}$	$\geq 50 \text{ GeV}$	$\geq 120~{\rm GeV}$	$\geq 50 \text{ GeV}$	T
• SUSY	H_{T}	$\geq 80~{ m GeV}$	$\geq 80~{ m GeV}$	$\geq 200 \text{ GeV}$	$\geq 200{ m GeV}$	\geq 320 GeV	\geq 320 GeV	\geq 200 GeV	
	q-flip BG	1.1 ± 0.2	0.5 ± 0.1	0.05 ± 0.01	0.3 ± 0.1	0.12 ± 0.03	0.026 ± 0.009	0.008 ± 0.004	
	Fake BG	3.4 ± 2.0	1.8 ± 1.2	0.32 ± 0.50	1.5 ± 1.1	0.81 ± 0.78	0.15 ± 0.45	0.15 ± 0.45	
	Rare SM BG	3.2 ± 1.6	2.1 ± 1.1	0.56 ± 0.28	2.0 ± 1.0	1.04 ± 0.52	0.39 ± 0.20	0.11 ± 0.06	
	Total BG	7.7 ± 2.6	4.4 ± 1.6	0.9 ± 0.6	3.7 ± 1.5	2.0 ± 0.9	0.6 ± 0.5	0.3 ± 0.5	
	Event yield	7	5	2	5	2	0	0	
	N_{UL} (12% unc.)	7.4	6.9	5.2	7.3	4.7	2.8	2.8	
	N _{UL} (20% unc.)	7.7	7.2	5.4	7.6	4.8	2.8	2.8	
	N_{UL} (30% unc.)	8.1	7.6	5.8	8.2	5.1	2.8	2.8	
									1

505-22-020

- Similar to SS dilepton analysis: just add 2 b-tagged jets
- Fake lepton background from b's dramatically smaller!
- top contribution expected to decrease by factor of 2!
- More exclusive search
 - same-sign top production
 - SUSY 4 top final states
 - SUSY sbottom pair production
 - SUSY 464W final states

- Similar to SS dilepton analysis: just add 2 b-tagged jets
- Fake lepton background from b's dramatically smaller!
- top contribution expected to decrease by factor of 2!
- More exclusive search
 - same-sign top production
 - SUSY 4 top final states
 - SUSY sbottom pair production
 - SUSY 464W final states

 $\tilde{\chi_1}$ P_1 505-22-020 P_2

- Similar to SS dilepton analysis: just add 2 b-tagged jets
- Fake lepton background from b's dramatically smaller!
- top contribution expected to decrease by factor of 2!
- More exclusive search
 - same-sign top production
 - SUSY 4 top final states
 - SUSY sbottom pair production
 - SUSY 464W final states

- Similar to SS dilepton analysis: just add 2 b-tagged jets
- Fake lepton background from b's dramatically smaller!
- top contribution expected to decrease by factor of 2!
- · More exclusive search
 - same-sign top production
 - SUSY 4 top final states
 - SUSY sbottom pair production
 - SUSY 464W final states

- Similar to SS dilepton analysis: just add 2 b-tagged jets
- Fake lepton background from b's dramatically smaller!
- top contribution expected to decrease by factor of 2!
- More exclusive search
 - same-sign top production
 - SUSY 4 top final states
 - SUSY sbottom pair production
 - SUSY 464W final states

- Similar to SS dilepton analysis: just add 2 b-tagged jets
- Fake lepton background from b's dramatically smaller!
- top contribution expected to decrease by factor of 2!
- More exclusive search
 - same-sign top production
 - SUSY 4 top final states
 - SUSY sbottom pair production
 - SUSY 464W final states

SS Dileptons + 2b-jets

- Similar to SS dilepton analysis: just add 2 b-tagged jets
- Fake lepton background from b's dramatically smaller!
- top contribution expected to decrease by factor of 2!
- · More exclusive search
 - same-sign top production
 - SUSY 4 top final states
 - SUSY sbottom pair production
 - SUSY 464W final states

$$M_T^R \equiv \sqrt{\frac{1}{2} \left[(p_T^1 + p_T^2)^2 - \vec{E}_T \cdot (\vec{p}_T^{\ 1} + \vec{p}_T^{\ 2})^2 \right]}$$

$$R \equiv \frac{M_T^R}{M_R}$$

LPC LHC Physics Center

$$R\equiv {M_T^R\over M_R}$$
 describes transverse event shape

26 16.03<u>.2012</u>

$$M_T^R \equiv \sqrt{rac{1}{2} \left[(p_T^1 + p_T^2)^2 - ec{E}_T \cdot (ec{p}_T^{-1} + ec{p}_T^{-2})^2
ight]}$$
 has edge at M_Δ

$$R\equiv {M_T^R\over M_R}$$
 describes transverse event shape

16.03.2012

CMS

辈 Fermilab

å Fermilab

16.03.2012

CMS

20 Lonto ouronlus

🕹 Fermilab

16.03.2012

CMS

20 Lonto ouronlus

🕹 Fermilab

16.03.2012

CMS

🕹 Fermilab

16.03.2012

CMS

CMS

EX0-11-030 Backgrounds • W/Z + b-jets • Norm: SB in Hadron box; =1 b-tag SB 22 b-tag • Etbar + jets • shape: tight Muon Box; =1 b-tag SB • Norm: tight Elect. Box; • Shape: Loose Muon Box; =1 b-tag SB • QCD multi b-jets =1 b-tag SB • Norm: Hadron Box SB;

3G Lepto-quarks

3G Lepto-quarks

LHC Physics Center

3G Lepto-quarks

500

3G Lepto-quarks

EX0-11-030 EF29 Fysics Center

- Clean dilepton signature
- Require:
 - 3 SF Leptons
 - 2 OS leptons with Mz
- No b-tag requirement

- Search for FCNC decay T -> tZ -> tll:
- Clean dilepton signature
- · Require:
 - 3 SF Leptons
 - 2 OS Leptons with Mz
- No b-tag requirement

- Search for FCNC decay T -> tZ -> tll:
- Clean dilepton signature
- Require:
 - 3 SF Leptons
 - 2 OS Leptons with Mz
- No b-tag requirement

LHC Physics Center

LHC Physics Center

arXiv: 1203.5410v1

Fermilab UIC University of Illinois at Chicago

Fermilab UIC University of Illinois at Chicago

100

200

300

 M_{lb}^{min} (GeV/c²)

33 16.03.2012

10

1

10⁻¹

t' to lepton+jets

LHC Physics Center

LHC Physics Center

LHC Physics Center

LPC LHC Physics Center

37

16.03.2012

LPC LHC Physics Center

SUMMARY

- CMS had an excellent 2011!
 - more than 40 new results sent to winter conferences: Standard Model, B-physics, Top, Higgs, SUSY, Exotica
- Stay tuned for more 2011 results:
 - Several 5fb-1 results are in the pipeline; will be released soon
 - · Many involving SUSY with heavy flavour:
 - all hadronic + b-jets; single-lepton + b-jets,
 all hadronic + τ's
 - Already analysing > 1 fb-1 (gulp!) 2012 data

· LHC and CMS performing extremely well!

W helicity in ttbar

Measure θ*, angle between
 lepton and b (W rest frame)

TOP

W helicity in ttbar

Measure θ*, angle between lepton and b (W rest frame)
Distribution reflects 3 possible W polarisations
Fo = 0.698, FL = 0.301, FR = 4.1x10⁻⁴

0.4

0.6

.1

0.8 $cos(\theta)$

LPC LHC Physics Center

42 16.03.2012

1 2

bin of generated ly l-ly l

Exotica Summary

LPC LHC Physics Center

🛟 Fermilab

LHC Physics Center

