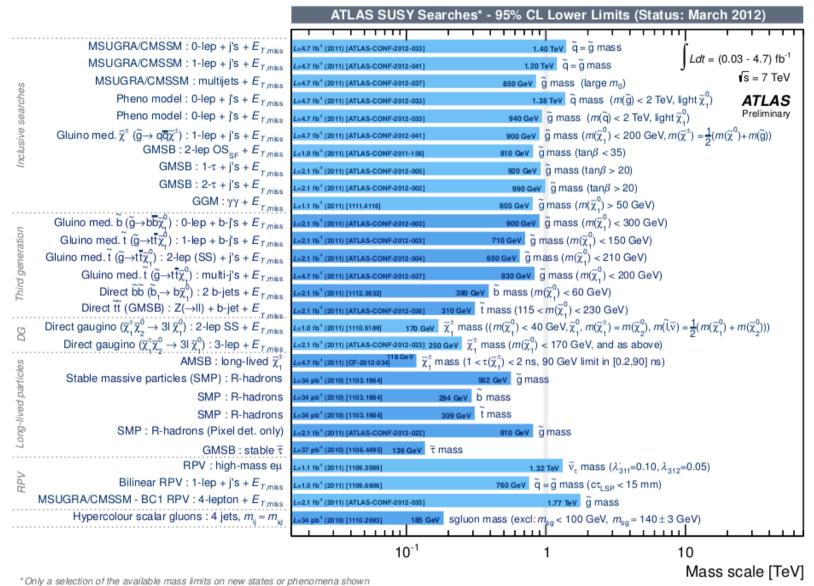
# Experimental overview: Direct Electrowino Productions

Chicago 2012 workshop on LHC physics, 2-4 May 2012, The University of Chicago, Chicago, IL

> Sanjay Padhi University of California, San Diego


#### Outline

- Introduction
- Experimental constraints from LEP
- Experimental constraints from Tevatron
- Direct electrowino production at the LHC
- Search results (so far) from the LHC experiments
  - ATLAS results
  - CMS results
- Next steps in the weakly produced SUSY sector
- Summary and conclusion

Many thanks to members from ATLAS & CMS collaborations as well as Shufang Su and Tao Han

### Introduction

#### ATLAS results (CMS similar)



Both ATLAS and CMS experiments have excluded SUSY colored production up to the TeV scale (with assumptions, not including direct stops/sbottoms productions)

#### Introduction

The absence of spectacular events with large hadronic activities and MET implies

- New colored (excluding 3<sup>rd</sup> gen) SUSY particles may not have been copiously produced.

#### In anticipation of heavier colored SUSY partners:

- Search for SUSY sector from direct electroweak production (EWinos) are important

Natural electroweak symmetry breaking, on the other hand predicts that

higgsinos, stops, and the gluino should not be too far above the weak scale.

EW sector (+stops/sbottoms) might be the only accessible particles @ LHC

For details on third generation studies see talks by - R. Cavanaugh & T. Golling

#### It is important to note:

- Direct production of electroweak SUSY particles at the LHC will have low rates
- Dark matter consideration favors nearly degenerate charginos and neutralinos
  - See Arkani-Hamed et. al (hep-ph/0601041), Baer et. al (hep-ph/0611387)
  - Identification at the LHC will be challenging

### Experimental constraints from LEP

Chargino ( $\tilde{\chi}_i^{\pm}$ ; i=1,2) and Neutralino ( $\tilde{\chi}_i^0$ ; i=1-4) productions at LEP:

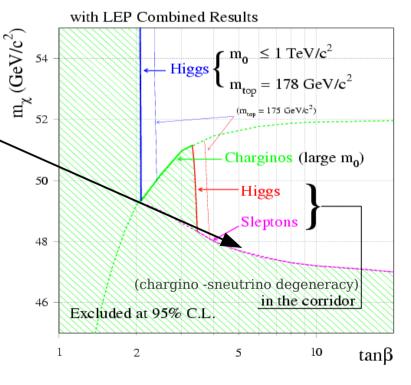
$$e^{+}e^{-} \to \tilde{\chi}^{+}\tilde{\chi}^{-} \to W^{+}W^{-}\tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}$$
  
 $e^{+}e^{-} \to \tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{0} \to l^{+}l^{-}\tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}$ 

Neutralino pairs via s-channel Z or t-channel with slepton exchange

Using mSUGRA or CMSSM framework

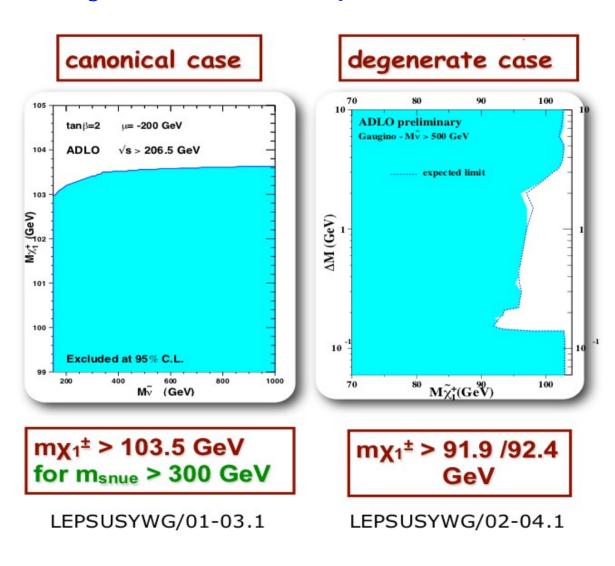
(assuming mixing in stau sector is small)

LSP mass below 47/50 GeV is excluded


However several assumptions are involved:

- mSUGRA / CMSSM
- gaugino mass unification
- $\tan \beta$  < 3.3 limits at large  $M_0$  (+higgs, chargino)

(M0 - common sfermion mass at GUT)


-  $tan\beta > 3.3$  the limit is using small  $M_0$ 

No mass limit in general outside these assumptions



### Experimental constraints from LEP

#### Charginos via: s-channel $\gamma/Z$ or t-channel with sneutrino exchange



Unification of gaugino masses at GUT scale is assumed.

- $-M1 = (5/3)\tan^2(\text{theta_W}) M2$
- $\sim 0.5 M2$

#### Canonical case:

- With M(sneutrino) > 300 GeV

#### Degenerate case:

- M1 and M2 nearly degenerate
- Large M0 (m(snu)  $\sim$ 500 GeV)

<u>In general Charginos up to ~ 100 GeV in mass are excluded by the LEP experiments</u>

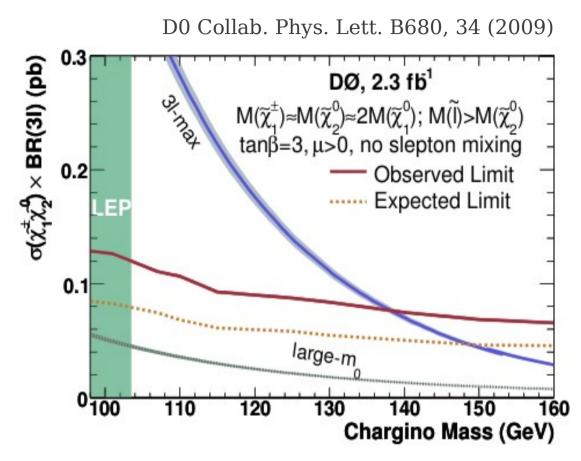
### Experimental constraints from Tevatron

D0 Collaboration:  $p\bar{p} \to \tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ 

Three leptons + MET signature

- e, 
$$\mu$$
, and  $\tau$ 

4 Channels (eel, μμl, eμτl, μτl)


Dominant bkg: WZ, ZZ in MET tails

Within the context of MSUGRA

**Assuming:** 

$$m_{\tilde{\chi}_1^\pm} \sim m_{\tilde{\chi}_2^0} \sim 2 m_{\tilde{\chi}_1^0}$$

- and neglecting the slepton mixing



- sleptons and sneutrinos heavier than lightest charginos and next lightest neutralino In the limit of heavy sleptons (large m0 scenario):
  - the slepton mass is just above mass of  $\tilde{\chi}_{2}^{0}$  leptonic BR is maximized (3l max case)

Chargino mass < 138 GeV is excluded by this study

### Experimental constraints from Tevatron

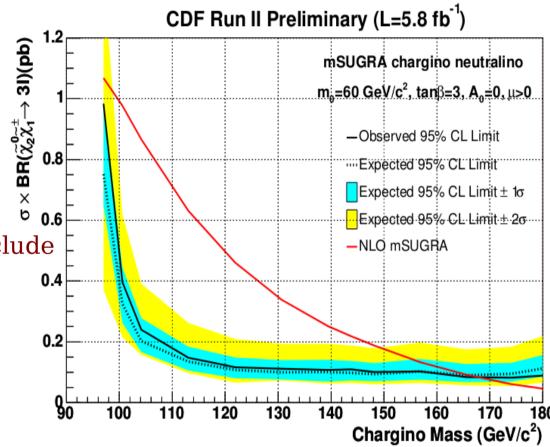
CDF Collaboration:  $p\bar{p} \to \tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ 

Three leptons + MET signature

Several SRs in the plane - MET &  $M_{\parallel}$ 

#### Modes:

- eel,  $\mu\mu l$  ; l = e,  $\mu,~\tau$  (or single track)


- Expanded the acceptance & also include

low  $p_{T}$  leptons ~ 5 GeV threshold.

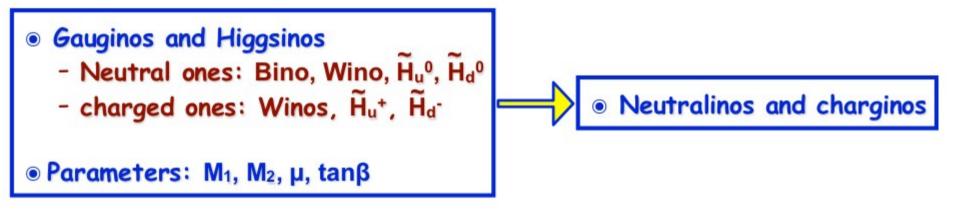
#### Major backgrounds:

- WZ, ZZ, dileptons + fakes

Within the context of MSUGRA



CDF Note: 10636


Exclude at 95% CL  $\sigma(\tilde{\chi}_1^{\pm}\tilde{\chi}_2^0) \times BR(lll)$  above 0.1 fb

Chargino mass below 168 GeV is excluded by this study

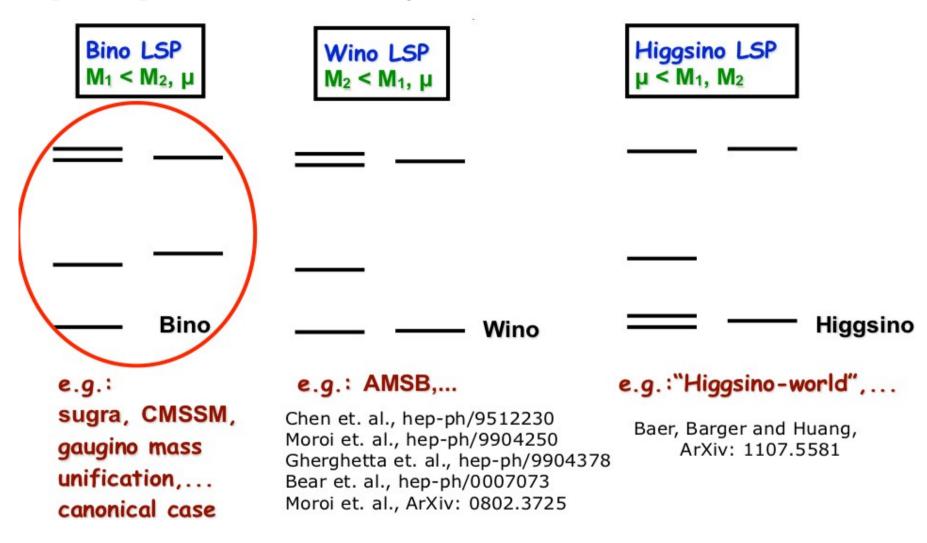
### Direct electrowino production at the LHC

#### Let us look at MSSM Electroweak sector with:

- No assumption of gaugino mass unification
- No sfermion mass unification
- In fact decouple sfermions
- Decouple (?) mSUGRA



#### Similarly for the sleptons:

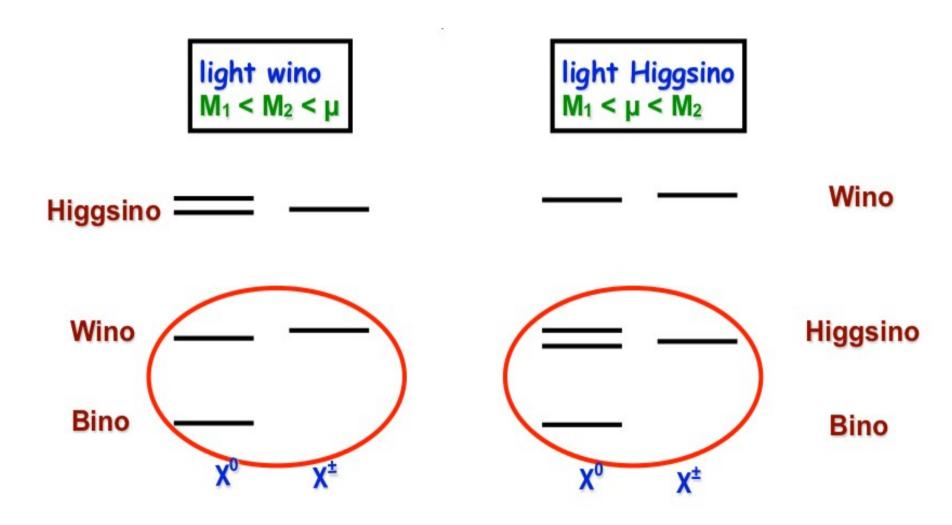

Sleptons: sIL, sIR, three generations

 No flavor mixing
 No LR mixing for the 1st, 2nd generations
 ⇒ seL, seR, smuL, smuR, stau1, stau2

 Parameters: MsIL2, MsIR2, (LR for stau? universality?)

### Direct electrowino production at the LHC

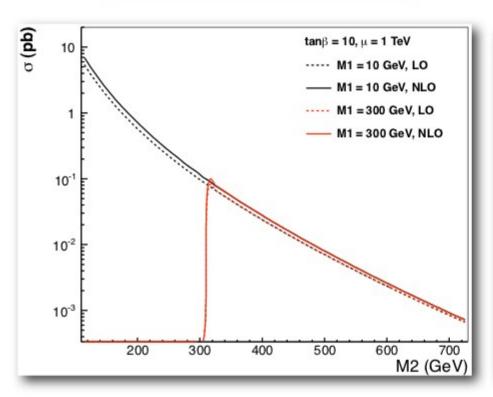
Decouple sleptons from the study (Most conservative case)

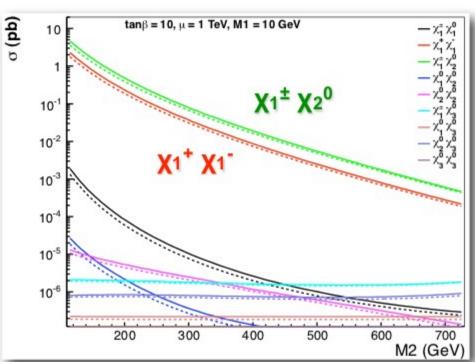



Remaining parameters: M1, M2 and  $\mu$ 

Higgsino masses depend on µ

### Direct electrowino production with bino LSP


With Bino LSP -  $ilde{\chi}_1^0$ 




Consider only the light wino sector for the time being ...

### Direct electrowino production with bino LSP

light wino  $M_1 < M_2 < \mu$ 





### cross section has little dependence on M<sub>1</sub>

The dominant cross sections are from  $\tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ 

The NLO corrections are ~10% level

### Direct electrowino production with bino LSP

Chargino decays (decoupled sleptons) T. Han, S. Padhi, S. Su (To be sumitted) on-shell light wino  $M_1 < M_2 < \mu$ 10° 10<sup>°</sup>  $\chi_1^0 h$  $\chi_1^0 lv_l$ <sup>3</sup> 10<sup>-1</sup>  $10^{-1}$  $\chi_1^0 \tau v_{\tau}$ ğ  $\chi_1^0 \tau \tau$ off-shell W\* on-shell W  $\chi_1^0$  bb 10<sup>-2</sup> 200 300 M<sub>2</sub> (GeV) 50d 200 400 500 400 300 100 100 GeV) off-shell Z\*

Similar observation in case of light Higgino case (not shown)

Search for  $\tilde{\chi}_2^0 \tilde{\chi}_1^{\pm}$  using three leptons + MET (2.06 fb<sup>-1</sup>)- ATLAS, arXiv:1204.5638

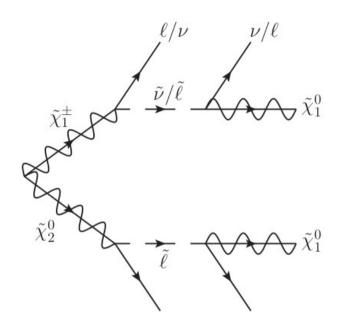
$$ilde{\chi}^0_2 ilde{\chi}^\pm_1$$
 decays via sleptons

Electrons/Muons:  $p_{_{\rm T}} > 10 \text{ GeV}$ 

Leading electron (muon) > 25 (20) GeV

- Mainly due to the trigger

At least on SFOS pair with  $m_{_{11}} > 20 \text{ GeV}$ 

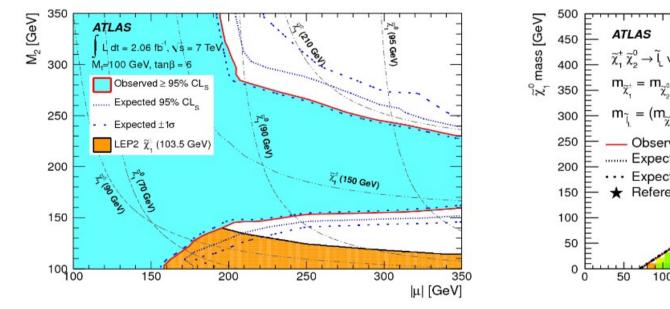

Two orthogonal Signal regions.

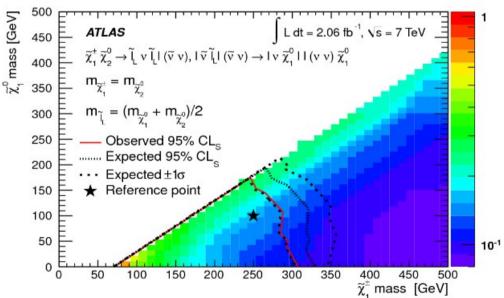
SR1 : a) Z-veto b) Veto events with b-jets

SR2 : a) Z-enriched, require Z, b) No specific veto for bjets

### Dominant background:

- Dibosons: WZ and ZZ (Use MC)
- Rare decays: ttbar + V (Use MC)
- Fakes from heavy flavor decays or jet fakes (Use Fake rate method)
- Electrons from photon conversion (Use control sample to estimate this)





| Model-independent | $dent \; A 	imes$ | $\epsilon \times \sigma$ | limit |
|-------------------|-------------------|--------------------------|-------|
|-------------------|-------------------|--------------------------|-------|

| 95% CL <sub>s</sub> limit |               |          |                     |  |  |  |
|---------------------------|---------------|----------|---------------------|--|--|--|
| SR                        | expected [fb] | observed | [fb]                |  |  |  |
| SR1 ( <i>Z</i> -veto)     | 7.1           | 9.9      |                     |  |  |  |
| SR2 ( <i>Z</i> -rich)     | 14.1          | 23.8     | See: A. Canepa talk |  |  |  |

### Limit in pMSSM

# Limit in $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ simplified models





Impressive early results - Leptonic BF gain due to sleptons in the intermediate cascade

Hard to constrain charginos/neutralinos without decoupling sleptons

#### Search for new physics using multileptons and MET (4.98 fb<sup>-1</sup>) - CMS SUS-11-013

- See details in S. Somalwar's Talk

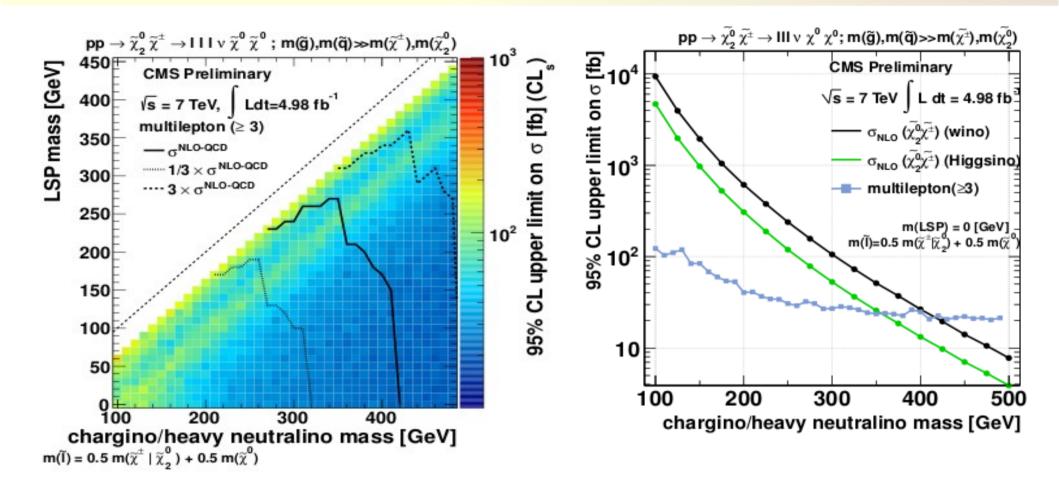
#### Event selection:

- 3 and  $\geq$  4 lepton combination with e,  $\mu$  and  $\tau$ 's
- Use single and dilepton triggers with  $p_{_{\rm T}}$  = 20, 10, 8 GeV
- Remove low mass resonances  $m_{_{11}} > 12 \text{ GeV}$
- Use MET Vs  $H_T$  or  $S_T$  (MET +  $H_T$  + Lepton  $p_T$ s )
- Invariant mass cut  $\boldsymbol{m}_{_{\!\Pi}}$  : With Z veto and Z enriched regions

#### Tau selection:

- Isolated tracks
- HPS algorithm with  $\pi^0$ 's

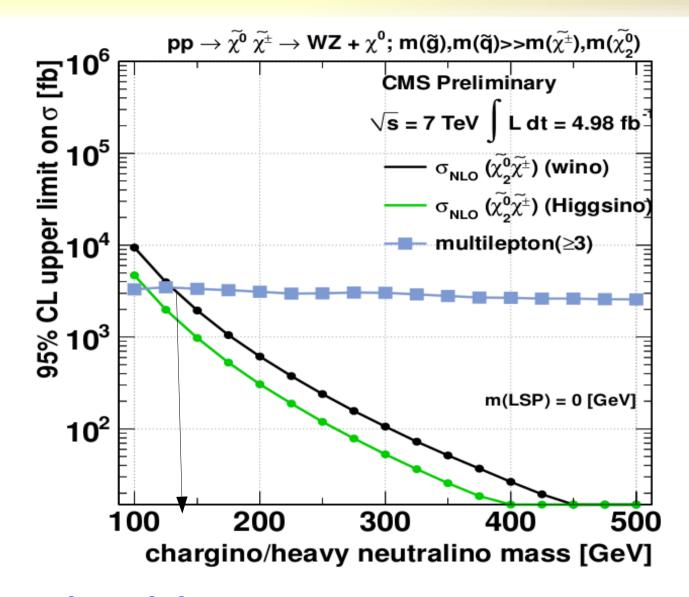
#### Major backgrounds:


- Dibosons from WZ and ZZ and top related bkgs (Use MC)
- -Top related bkg Use fake rates for heavy flavor decays

#### Other bkg:

- Z+Jets, WW, W+Jets, QCD Use fake rate method
- Z + Asymmetric photon conversion Estimate using dilepton + photon samples

Several signal regions based on With/Without Z,  $H_{\scriptscriptstyle T}$ , MET and lepton multiplicities


|     | Selection                                                                                  | Selection                                                                                                                   |                                                    | 4(e/μ)                                                                                                   |                                                              | 3(e/μ)+T                                                                                                |                                                                       | 2(e/μ)+2T                                                          |                                            |
|-----|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------|
|     | MET?                                                                                       | HT?                                                                                                                         | Z?                                                 | SM                                                                                                       | Obs                                                          | SM                                                                                                      | Obs                                                                   | SM                                                                 | Obs                                        |
|     |                                                                                            |                                                                                                                             |                                                    |                                                                                                          |                                                              |                                                                                                         |                                                                       |                                                                    |                                            |
|     | MET>50                                                                                     |                                                                                                                             | NoZ                                                | 0.017 ± 0.005                                                                                            | 0                                                            | 0.08 ± 0.06                                                                                             | 0                                                                     | 0.6 ± 0.6                                                          | 0                                          |
|     | MET>50                                                                                     |                                                                                                                             | Z                                                  | 0.20 ± 0.04                                                                                              | 0                                                            | 0.25 ± 0.11                                                                                             | 0                                                                     | 0.7 ± 1.0                                                          | 0                                          |
|     | MET>50                                                                                     |                                                                                                                             | NoZ                                                | 0.19 ± 0.07                                                                                              | 1                                                            | 0.56 ± 0.16                                                                                             | 3                                                                     | 1.4 ± 0.6                                                          | 1                                          |
|     | MET>50                                                                                     |                                                                                                                             | Z                                                  | 0.74 ± 0.20                                                                                              | 1                                                            | 2.2 ± 0.6                                                                                               | 4                                                                     | 1.1 ± 0.7                                                          | 0                                          |
|     | MET<50                                                                                     |                                                                                                                             | noZ                                                | 0.006 ± 0.001                                                                                            | 0                                                            | 0.13 ± 0.08                                                                                             | 0                                                                     | 0.25 ± 0.07                                                        | 0                                          |
|     | MET<50                                                                                     |                                                                                                                             | Z                                                  | 0.78 ± 0.31                                                                                              | 1                                                            | 0.52 ± 0.20                                                                                             | 0                                                                     | 1.13 ± 0.42                                                        | 0                                          |
| 4   | MET<50                                                                                     |                                                                                                                             | NoZ                                                | 2.4 ± 1.0                                                                                                | 1                                                            | 3.7 ± 1.2                                                                                               | 5                                                                     | 10.5 ± 3.2                                                         | 17                                         |
|     | MET<50                                                                                     | HT<200                                                                                                                      | Z                                                  | 35 ± 14                                                                                                  | 33                                                           | 16.1 ± 4.9                                                                                              | 20                                                                    | 42 ± 16                                                            | 62                                         |
| ſ   |                                                                                            |                                                                                                                             |                                                    |                                                                                                          |                                                              |                                                                                                         |                                                                       |                                                                    |                                            |
|     | SUM                                                                                        | 4-body                                                                                                                      |                                                    | 39 ± 15                                                                                                  | 37                                                           | 23.6 ± 5.1                                                                                              | 32                                                                    | 58 ± 16                                                            | 80                                         |
| - 1 |                                                                                            |                                                                                                                             |                                                    |                                                                                                          |                                                              |                                                                                                         |                                                                       |                                                                    |                                            |
| L   |                                                                                            |                                                                                                                             |                                                    |                                                                                                          |                                                              |                                                                                                         |                                                                       |                                                                    |                                            |
| L   |                                                                                            |                                                                                                                             |                                                    |                                                                                                          |                                                              |                                                                                                         |                                                                       |                                                                    |                                            |
| L   | Selection                                                                                  | on                                                                                                                          |                                                    | 3(e/μ)                                                                                                   |                                                              | 2(e/μ)+T                                                                                                |                                                                       | 1(e/μ)+2T                                                          |                                            |
|     | Selection                                                                                  | on<br>HT?                                                                                                                   | Z?                                                 | 3(e/μ)<br>SM                                                                                             | Obs                                                          | 2(e/μ)+T<br>SM                                                                                          | Obs                                                                   | 1(e/μ)+2T<br>SM                                                    | Obs                                        |
| _   |                                                                                            |                                                                                                                             | Z?                                                 |                                                                                                          | Obs                                                          |                                                                                                         | Obs                                                                   |                                                                    | Obs                                        |
|     |                                                                                            | HT?                                                                                                                         | Z?                                                 |                                                                                                          | Obs 2                                                        |                                                                                                         | Obs<br>33                                                             |                                                                    | Obs                                        |
|     | MET?                                                                                       | HT?                                                                                                                         |                                                    | SM                                                                                                       |                                                              | SM                                                                                                      |                                                                       | SM                                                                 |                                            |
|     | MET?                                                                                       | HT?<br>HT>200<br>HT<200                                                                                                     | n/a                                                | SM<br>1.5 ± 0.5                                                                                          | 2                                                            | SM<br>30.3 ±9.6                                                                                         | 33                                                                    | SM 13.5 ± 2.6                                                      | 15                                         |
|     | MET>50<br>MET>50                                                                           | HT>200<br>HT<200<br>HT>200                                                                                                  | n/a<br>n/a                                         | SM<br>1.5 ± 0.5<br>6.5 ± 2.3                                                                             | 2 7                                                          | SM<br>30.3 ± 9.6<br>140 ± 37                                                                            | 33<br>159                                                             | 13.5 ± 2.6<br>106 ± 16                                             | 15<br>82                                   |
|     | MET>50<br>MET>50<br>MET>50<br>MET<50                                                       | HT>200<br>HT<200<br>HT>200<br>HT>200                                                                                        | n/a<br>n/a<br>n/a                                  | SM<br>1.5 ± 0.5<br>6.5 ± 2.3<br>1.2 ± 0.7                                                                | 2<br>7<br>1                                                  | SM<br>30.3 ±9.6<br>140 ±37<br>16.5 ±4.5                                                                 | 33<br>159<br>16                                                       | 13.5 ± 2.6<br>106 ± 16<br>31.9 ± 4.8                               | 15<br>82<br>18                             |
|     | MET>50<br>MET>50<br>MET>50<br>MET<50<br>MET<50                                             | HT>200<br>HT<200<br>HT>200<br>HT>200<br>HT>200                                                                              | n/a<br>n/a<br>n/a<br>n/a                           | SM<br>1.5 ± 0.5<br>6.5 ± 2.3<br>1.2 ± 0.7<br>11.6 ± 3.6                                                  | 2<br>7<br>1<br>14                                            | SM<br>30.3 ± 9.6<br>140 ± 37<br>16.5 ± 4.5<br>354 ± 55                                                  | 33<br>159<br>16<br>446                                                | 13.5 ± 2.6<br>106 ± 16<br>31.9 ± 4.8<br>1025 ± 171                 | 15<br>82<br>18<br>1006                     |
|     | MET>50<br>MET>50<br>MET>50<br>MET<50<br>MET<50<br>MET>50                                   | HT>200<br>HT<200<br>HT>200<br>HT>200<br>HT>200<br>HT>200                                                                    | n/a<br>n/a<br>n/a<br>n/a<br>n/a                    | SM<br>1.5 ±0.5<br>6.5 ±2.3<br>1.2 ±0.7<br>11.6 ±3.6<br>4.8 ±1.3                                          | 2<br>7<br>1<br>14<br>8                                       | SM<br>30.3 ±9.6<br>140 ±37<br>16.5 ±4.5<br>354 ±55<br>31.0 ±9.5                                         | 33<br>159<br>16<br>446<br>16                                          | 13.5 ± 2.6<br>106 ± 16<br>31.9 ± 4.8<br>1025 ± 171                 | 15<br>82<br>18<br>1006                     |
| •   | MET>50<br>MET>50<br>MET>50<br>MET<50<br>MET<50<br>MET>50<br>MET>50                         | HT>200<br>HT<200<br>HT>200<br>HT>200<br>HT>200<br>HT>200<br>HT>200<br>HT>200                                                | n/a<br>n/a<br>n/a<br>n/a<br>noZ                    | SM<br>1.5 ±0.5<br>6.5 ±2.3<br>1.2 ±0.7<br>11.6 ±3.6<br>4.8 ±1.3<br>17.8 ±6.0                             | 2<br>7<br>1<br>14<br>8<br>20                                 | SM  30.3 ±9.6 140 ±37 16.5 ±4.5 354 ±55 31.0 ±9.5 24.0 ±4.9                                             | 33<br>159<br>16<br>446<br>16<br>13                                    | 13.5 ± 2.6<br>106 ± 16<br>31.9 ± 4.8<br>1025 ± 171                 | 15<br>82<br>18<br>1006<br>                 |
| •   | MET>50<br>MET>50<br>MET<50<br>MET<50<br>MET<50<br>MET>50<br>MET>50                         | HT?<br>HT>200<br>HT<200<br>HT>200<br>HT>200<br>HT>200<br>HT>200<br>HT<200<br>HT>200                                         | n/a<br>n/a<br>n/a<br>n/a<br>noZ<br>Z<br>noZ        | SM<br>1.5 ±0.5<br>6.5 ±2.3<br>1.2 ±0.7<br>11.6 ±3.6<br>4.8 ±1.3<br>17.8 ±6.0<br>25.9 ±7.3                | 2<br>7<br>1<br>14<br>8<br>20<br>30                           | SM  30.3 ±9.6 140 ±37 16.5 ±4.5 354 ±55 31.0 ±9.5 24.0 ±4.9 106 ±27                                     | 33<br>159<br>16<br>446<br>16<br>13<br>114                             | 13.5 ± 2.6<br>106 ± 16<br>31.9 ± 4.8<br>1025 ± 171<br><br>         | 15<br>82<br>18<br>1006<br><br>             |
| •   | MET>50 MET>50 MET<50 MET<50 MET<50 MET>50 MET>50 MET>50 MET>50 MET>50                      | HT>200<br>HT>200<br>HT>200<br>HT>200<br>HT>200<br>HT>200<br>HT>200<br>HT>200<br>HT>200<br>HT>200                            | n/a<br>n/a<br>n/a<br>n/a<br>noZ<br>z<br>noZ        | SM  1.5 ±0.5 6.5 ±2.3 1.2 ±0.7 11.6 ±3.6 4.8 ±1.3 17.8 ±6.0 25.9 ±7.3 4.4 ±1.5                           | 2<br>7<br>1<br>14<br>8<br>20<br>30<br>11                     | SM  30.3 ±9.6 140 ±37 16.5 ±4.5 354 ±55 31.0 ±9.5 24.0 ±4.9 106 ±27 51.8 ±6.2                           | 33<br>159<br>16<br>446<br>16<br>13<br>114<br>45                       | 13.5 ± 2.6<br>106 ± 16<br>31.9 ± 4.8<br>1025 ± 171<br><br><br>     | 15<br>82<br>18<br>1006<br><br>             |
| •   | MET>50 MET>50 MET<50 MET<50 MET>50 MET>50 MET>50 MET>50 MET>50 MET>50 MET>50               | HT>200<br>HT<200<br>HT<200<br>HT>200<br>HT>200<br>HT>200<br>HT>200<br>HT>200<br>HT>200<br>HT>200                            | n/a<br>n/a<br>n/a<br>n/a<br>noZ<br>Z<br>noZ<br>noZ | SM  1.5 ±0.5 6.5 ±2.3 1.2 ±0.7 11.6 ±3.6 4.8 ±1.3 17.8 ±6.0 25.9 ±7.3 4.4 ±1.5 126 ±47                   | 2<br>7<br>1<br>14<br>8<br>20<br>30<br>11<br>141              | SM  30.3 ± 9.6 140 ± 37 16.5 ± 4.5 354 ± 55 31.0 ± 9.5 24.0 ± 4.9 106 ± 27 51.8 ± 6.2 115 ± 16          | 33<br>159<br>16<br>446<br>16<br>13<br>114<br>45                       | 13.5 ± 2.6<br>106 ± 16<br>31.9 ± 4.8<br>1025 ± 171<br><br><br><br> | 15<br>82<br>18<br>1006<br><br><br>         |
| •   | MET>50 MET>50 MET>50 MET<50 MET<50 MET>50 MET>50 MET>50 MET>50 MET>50 MET>50 MET>50        | HT?<br>HT>200<br>HT>200<br>HT>200<br>HT>200<br>HT>200<br>HT>200<br>HT>200<br>HT>200<br>HT>200<br>HT>200<br>HT>200<br>HT>200 | n/a n/a n/a n/a noZ Z noZ z z                      | SM  1.5 ±0.5 6.5 ±2.3 1.2 ±0.7 11.6 ±3.6 4.8 ±1.3 17.8 ±6.0 25.9 ±7.3 4.4 ±1.5 126 ±47 18.4 ±4.5         | 2<br>7<br>1<br>14<br>8<br>20<br>30<br>11<br>141<br>15        | SM  30.3 ± 9.6 140 ± 37 16.5 ± 4.5 354 ± 55 31.0 ± 9.5 24.0 ± 4.9 106 ± 27 51.8 ± 6.2 115 ± 16 244 ± 24 | 33<br>159<br>16<br>446<br>16<br>13<br>114<br>45<br>107<br>166         | 13.5 ± 2.6<br>106 ± 16<br>31.9 ± 4.8<br>1025 ± 171<br><br><br><br> | 15<br>82<br>18<br>1006<br><br><br><br>     |
| ,   | MET>50 MET>50 MET<50 MET<50 MET<50 MET>50 MET>50 MET>50 MET>50 MET>50 MET>50 MET<50 MET<50 | HT?<br>HT>200<br>HT>200<br>HT>200<br>HT>200<br>HT>200<br>HT>200<br>HT>200<br>HT>200<br>HT>200<br>HT>200<br>HT>200<br>HT>200 | n/a n/a n/a n/a noZ Z noZ z z z noZ                | SM  1.5 ±0.5 6.5 ±2.3 1.2 ±0.7 11.6 ±3.6 4.8 ±1.3 17.8 ±6.0 25.9 ±7.3 4.4 ±1.5 126 ±47 18.4 ±4.5 142 ±36 | 2<br>7<br>1<br>14<br>8<br>20<br>30<br>11<br>141<br>15<br>123 | SM  30.3 ±9.6 140 ±37 16.5 ±4.5 354 ±55 31.0 ±9.5 24.0 ±4.9 106 ±27 51.8 ±6.2 115 ±16 244 ±24 2906 ±412 | 33<br>159<br>16<br>446<br>16<br>13<br>114<br>45<br>107<br>166<br>3721 | SM  13.5 ± 2.6  106 ± 16  31.9 ± 4.8  1025 ± 171                   | 15<br>82<br>18<br>1006<br><br><br><br><br> |



#### Impressive results:

- Similar to ATLAS with larger coverage and with sleptons in the intermediate state

Hard to constrain charginos/heavy neutralinos without decoupling sleptons



CMS SUS-11-016

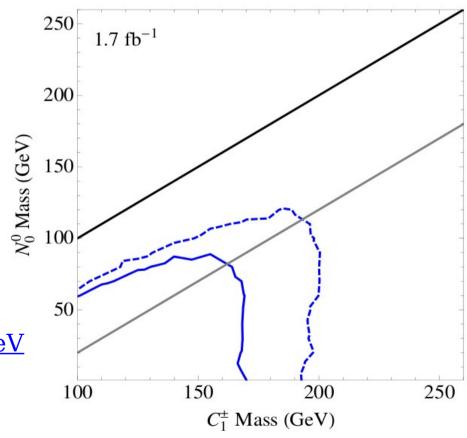
In the slepton decouple limit:

Exclusion bounds from LHC with charginos/heavy neutralinos up to ~ 140 GeV

The remaining dominant contribution in EWKino (light Wino) sector is from:  $\tilde{\chi}^+ \tilde{\chi}^-$ 

None of the LHC experiments have bounds in this mode

- Re-interpretation/exclusion by M. Lisanti & N. Weiner (arXiv:1112.483)
- Use  $H \rightarrow WW$  (and  $H \rightarrow ZZ$ ) results from ATLAS and CMS


Dashed and solid lines indicate

- 1 and 2σ sensitivity

The sensitivity is defined as:

$$N_{\rm signal} \ge 2 \times \sqrt{B_{\rm stat}^2 + B_{\rm sys}^2}.$$

<u>Charginos are most likely above ~200 GeV</u> <u>based on this study</u>



## Next steps in the weakly produced SUSY sector

Experimental Search for direct  $\tilde{\chi}_1^+ \tilde{\chi}_1^-$  in OS leptons with Jet veto

- Similar to SM  $H \rightarrow WW$  study

 $ilde{\chi}_2^0 ilde{\chi}_1^\pm$  - Search using Same Sign dileptons with Jet veto

Combination of 3 leptons + SS dileptons (+jet veto) should give largest sensitivity

Predominant decays of higgsinos are currently unexplored

- This has significant value from naturalness arguments

Investigation of  $h_0 \sim 125$  GeV in weakly produced SUSY sector

Slepton pair productions at the LHC

-See also: "Slepton Discovery in Electroweak Cascade Decay", arXiv:1111.2615

## Summary and Outlook

SUSY Electrowino sector provides tremendous opportunity for NP

- in absence of spectacular MET and  $\boldsymbol{H}_{_{\boldsymbol{T}}}$  events at the LHC

Naturalness requirement suggests Higgsinos to be light

Current limits on gauginos are relatively weak

With increase in luminosity along with 8 TeV collisions

- things might get interesting with the EWKino sector

Backup slides

#### ATLAS Electrowino results

TABLE I. Expected numbers of events from SM backgrounds (Bkg.) and observed numbers of events in data, for 2.06 fb<sup>-1</sup>, in control regions VR1 and VR2, and in signal regions SR1 and SR2. Both statistical and systematic uncertainties are included.

| Selection                 | VR1             | VR2               | SR1             | SR2           |
|---------------------------|-----------------|-------------------|-----------------|---------------|
| $t\bar{t}W^{(*)}/Z^{(*)}$ | $1.4 {\pm} 1.1$ | $0.7 {\pm} 0.6$   | $0.4 {\pm} 0.3$ | $2.7 \pm 2.1$ |
| $ZZ^{(*)}$                | $6.7 {\pm} 1.5$ | $0.03 {\pm} 0.04$ | $0.7{\pm}0.2$   | $3.4{\pm}0.8$ |
| $WZ^{(*)}$                | $61\pm11$       | $0.4 {\pm} 0.2$   | $11\pm2$        | $58 \pm 11$   |
| Reducible Bkg.            | $56 \pm 35$     | $14 \pm 9$        | $14\pm4$        | $7.5 \pm 3.9$ |
| Total Bkg.                | $125 \pm 37$    | $15 \pm 9$        | $26\pm5$        | $72\pm12$     |
| Data                      | 122             | 12                | 32              | 95            |