Experimental Aspects of Light Stop Searches

Ximo Poveda

Chicago 2012 workshop on LHC physics

May 4, 2012

Introduction

- Sizeable mixing of gauge eigenstates to form mass eigenstates for the third generation squarks
- Lightest stop squark (\tilde{t}_1) :
 - Can be relatively light (150-250 GeV)
 - Can be produced in pairs with high cross section at the LHC or appear in the gluino cascade decay
 - O Produce b and t in its decay
 - Ligh stops favored in several models for SUSY to solve the hierarchy problem naturally

Lawrence Hall, Oct 21st, 2011

Signal Production and Decay

- Stop production :
 - Direct $\tilde{t}_1 \tilde{t}_1^*$ production
 - \circ Gluino-mediated with $ilde{g}
 ightarrow ilde{t}_1 t$
- Tevatron searches based on direct stop production and $\tilde{t}_1 \to c \tilde{\chi}^0_1$ or $\tilde{t}_1 \to b \ell \tilde{\nu}$ decays
- Stop decays explored at LHC:

$$egin{array}{lll} \circ & ilde{t}_1
ightarrow t ilde{\chi}^0_i \ \circ & ilde{t}_1
ightarrow b ilde{\chi}^\pm_i \end{array}$$

- $t_1 \rightarrow b\chi_j^-$
- Final state with 2-4 heavy quarks (b or t)
- Signature: b-jets, E_T^{miss} , light jets, leptons
- Possible analysis strategies:
 - *b*-jets: 1 lepton+*b*-jets, several *b*-jets
 - **Jets:** large jet multiplicities
 - Leptons: 2 opposite- or same-sign leptons, 3 leptons

Outline

- General talks on searches for New Physics with heavy flavor by R. Cavanaugh and T. Golling on Wednesday
- Summary of recent results from gluino-mediated and direct stop searches
- Results from stop searches in ATLAS and CMS:
 - ATLAS search for gluino mediated stop with 1 lepton, b-jets and E_T^{miss} (2.05 fb⁻¹): arXiv:1203.6193, submitted to PRD
 - ATLAS search for gluino mediated stop with large jet multiplicities and E_T^{miss} (4.7 fb⁻¹): ATLAS-CONF-2012-037
 - ATLAS search for gluino mediated stop with 2 same-sign leptons, jets and $E_{\rm T}^{\rm miss}$ (2.05 fb⁻¹): arXiv:1203.5763, submitted to PRL
 - CMS search for gluino mediated stop with 2 same-sign leptons, b-jets and E_T^{miss} (4.7 fb⁻¹): CMS-PAS-SUS-11-020
 - o ATLAS search for direct stop in GMSB models with 2 same-flavour opposite-sign leptons, b-jets and $E_{\rm T}^{\rm miss}$ (2.05 fb $^{-1}$): arXiv:1204.6736 submitted to PLB
- Some of those analysis have signal regions and interpretations aiming at other models (MSUGRA, sbottom production, SO(10), etc.), but only stop interpretations will be discussed in this talk

Background Estimation Methods

- Typical background estimation methods used in stop analyses:
 - Top, *W*+jets:
 - Estimated with "transfer factors" using background-enhanced control regions:

$$N_{\mathsf{SR}}^{\mathsf{est},\mathsf{Bkg}} = rac{N_{\mathsf{SR}}^{\mathsf{MC}}}{N_{\mathsf{CR}}^{\mathsf{MC}}} (N_{\mathsf{CR}}^{\mathsf{data}} - N_{\mathsf{CR}}^{\mathsf{MC},\mathsf{others}})$$

- Correlated systematics between numerator and denominator largely cancel
- QCD and fake-lepton backgrounds:
 - Estimated from data
 - Pass-fail matrix method based on a looser lepton definition commonly used for fake-lepton estimations
- \circ Smaller irreducible backgrounds: diboson, associated $t\bar{t}$ production, etc.
 - Using Monte Carlo
- $\ \, \text{Charge flip in same-sign dilepton analyses:} \ e_{\mathsf{hard}}^{\mp} \to \gamma_{\mathsf{hard}} e_{\mathsf{soft}}^{\mp} \to e_{\mathsf{soft}}^{\mp} e_{\mathsf{soft}}^{\mp} e_{\mathsf{hard}}^{\pm} \\$
 - Semi data-driven
- Uncertainties affecting the results:
 - O Experimental uncertainties: jet energy scale calibration, b-tagging efficiency, etc.
 - O Theoretical uncertainties: renormalization and factorization scales, PDF, etc.

ATLAS $1\ell + b$ -jets $+ E_{T}^{miss}$ (2.05 fb⁻¹)

- Exploiting the presence of b-jets from the top decays and the leptons produced from the leptonic top decays
- Analysis selection:
 - Single lepton trigger \rightarrow one lepton ($\ell \equiv e$ or μ) with $p_{\rm T}(e,\mu) > 25,20$ GeV
 - Veto on additional leptons
 - At least four jets with $p_T(\text{jet}_1) > 60 \text{ GeV}$ and $p_T(\text{jet}_{2,3,4}) > 50 \text{ GeV}$
 - One of the four leading jets must be b-tagged
 - \circ $E_{\rm T}^{\rm miss} > 80~{\rm GeV}$

$$\circ \ \ m_{\mathsf{T}} = \sqrt{2 \cdot p_{\mathsf{T}}^{\ell} \cdot E_{\mathsf{T}}^{\mathsf{miss}} \cdot (1 - \mathsf{cos}(\Delta \phi(\ell, E_{\mathsf{T}}^{\mathsf{miss}}))} > 100 \ \mathsf{GeV}$$

Signal regions:

• **SR1-D**:
$$m_{\text{eff}} = \sum_{i} p_{\text{T}}^{\text{jet},i} + \sum_{i} p_{\text{T}}^{\ell,j} + E_{\text{T}}^{\text{miss}} > 700 \text{ GeV}$$

$$\circ$$
 SR1-E: $m_{
m eff} > 700$ GeV, $E_{
m T}^{
m miss} > 200$ GeV

- Background estimation:
 - Non-QCD background: Semi data-driven estimation using transfer factors from control region ($40 < m_{\rm T} < 100$ GeV, $m_{\rm eff} > 500$ GeV)
 - QCD background:

Estimated from data using a pass-fail matrix method

ATLAS $1\ell + b$ -jets $+ E_{T}^{miss}$ (2.05 fb⁻¹): Results

 No excess over the SM prediction observed:

Sig. Reg.	SM background	Data
SR1-D (e)	39 ± 12	43
SR1-D (μ)	38 ± 14	38
SR1-E (e)	8.1 ± 3.4	11
SR1-E (μ)	6.3 ± 4.2	6

• Interpretation in simplified models with $m_{\tilde{g}} < m_{\tilde{t}_1} \sim 1$ TeV and $RR(\tilde{a} \rightarrow t \bar{t} \tilde{x}^0) - 1$

ATLAS Multijet Analysis (4.7 fb^{-1})

- Analysis requiring high $E_{\rm T}^{\rm miss}$, no isolated lepton, and \geqslant 6 to \geqslant 9 jets
- Multijet trigger (4 jets with $p_T > 45$ GeV or 5 jets with $p_T > 30$ GeV)
- 6 signal regions defined (8j55 and 9j55 sensitive to \tilde{t}_1 production):

Signal region	7j55	8j55	9j55	6j80	7j80	8j80
Isolated leptons (e, μ)	=0					
Jet p _T	> 55 GeV		> 80 GeV			
Jet η	< 2.8					
Number of jets	≥7	≥ 8	≥9	≥6	≥ 7	≥8
$E_{\mathrm{T}}^{\mathrm{miss}}/\sqrt{H_{T}}$	> 4 GeV ^{1/2}					

- $E_{\rm T}^{\rm miss}$ cut as a function of $H_T = \sum_{j \in t} p_{\rm T}^{\rm jet} \to {\sf Minimal}$ cut on $E_{\rm T}^{\rm miss} > 84,89$ GeV for 8j55, 9j55
- Background estimation:
 - o "Multi-jet" backgrounds (QCD, fully hadronic $t\overline{t}$, W and Z decays): Estimated from data using control regions with lower $E_{T}^{miss}/\sqrt{H_{T}}$ and/or jet multiplicity
 - \circ "Leptonic" backgrounds (non-fully-hadronic decays of $t\bar{t}$, W+jets and Z+jets): Estimated from control regions using transfer factors

ATLAS Multijet Analysis (4.7 fb $^{-1}$): Results

No excess observed over the SM prediction:

·			
Signal region	8j55	9j55	
Multi-jets	10±3	1.2±0.4	
$t\bar{t} \to q\ell, \ell\ell$	5.7±6.0	0.70±0.72	
W + jets	0.81±0.72	0+0.13	
Z + jets	0.05±0.19	0+0.12	
Total Standard Model	17±7	1.9±0.8	
Data	22	3	

• Results interpreted in the same $\tilde{g} \to t\bar{t}\tilde{\chi}^0_1$ model used for the 1 lepton+*b*-jet analysis

- Low sensitivity in the region close to the kinematic limit $(m_{\tilde{g}} \gtrsim 2m_t + m_{\tilde{\chi}_1^0})$ similarly to the 1 lepton+b-jets analysis
- Both analyses have strong requirements on $m_{\rm eff}$, around 500-700 GeV \to Reduced sensitivity for final states with small mass splitting between \tilde{g} and its decays products

ATLAS 2ℓ SS + jets + $E_{\rm T}^{\rm miss}$ (2.05 fb⁻¹)

- Exploit same-sign (SS) dilepton signature with softer jet cuts
- Analysis selection:
 - Single lepton and dilepton triggers
 - $^{\circ}$ At least two leptons (e or μ) with $p_{\rm T} > 20~{
 m GeV}$
 - The leading lepton pair must be SS
 - \circ At least four jets with $p_{\rm T} > 50~{\rm GeV}$
- Signal region for stop search:
 - \circ SR2: $E_{
 m T}^{
 m miss} > 150$ GeV, $m_{
 m T} > 100$ GeV
- SM background evaluation:
 - "Fake-lepton" background:
 Matrix method
 - Electron charge mis-ID:
 Semi data-driven
 - Obboson and associated $t\bar{t}$ production $(t\bar{t} + X)$:

Directly from MC

ATLAS 2ℓ SS + jets + $E_{\rm T}^{\rm miss}$ (2.05 fb⁻¹): Results

- Very small background expectation
- No event observed in signal region:

	SR2
$t\bar{t} + X$	0.21 ± 0.16
Diboson	0.02 ± 0.01
Fake-lepton	< 0.17
Charge mis-ID	0.039 ± 0.007
Total SM	0.27 ± 0.24
Observed	0

- ullet Results interpreted in the $ilde{g}
 ightarrow t ar{t} ilde{\chi}^0_1$ simplified model
- Comparison with 1 lepton+b-jets: 2 SS lepton slightly worse at high $m_{\tilde{g}}$ but better at high $m_{\tilde{\chi}_1^0}$ (softer cuts: 4 jets of 50 GeV and $E_{\rm T}^{\rm miss} > 150$ GeV)

Other Interpretations: $\tilde{g} \to t \tilde{t}_1 \to t b \tilde{\chi}_1^\pm$

- Results from the 1 lepton+b-jets and 2 SS lepton analysis also interpreted in other models
- MSSM scenario considering both $\tilde{g}\tilde{g}$ and $\tilde{t}_1\tilde{t}_1^*$ production
- Mass spectrum:
 - \circ All quarks heavier than gluino except stop with $m_{ ilde{g}} > m_{ ilde{t}_1} + m_t$
 - $\circ m_{ ilde{\chi}_1^\pm} \simeq 2 m_{ ilde{\chi}_1^0}, \, m_{ ilde{\chi}_1^0} = 60 \; {
 m GeV}$
- Decays: $\mathsf{BR}(\tilde{g} \to \tilde{t}_1 t) = 1$, $\mathsf{BR}(\tilde{t}_1 \to b \tilde{\chi}_1^\pm) = 1$ and $\mathsf{BR}(\tilde{\chi}_1^\pm \to \tilde{\chi}_1^0 \ell^\pm \nu) = 11\%$

• Exclusion of stop masses of \sim 450 GeV for gluino masses of \sim 650 GeV

CMS 2ℓ SS + b-jets + E_{T}^{miss} (4.7 fb⁻¹)

- Using the SS dilepton and b-jet signatures together
- Analysis selection:
 - Dilepton triggers
 - Two SS leptons (e or μ) with $p_{\rm T} > 20~{\rm GeV}$
 - Veto events with a third lepton if compatible with a Z boson
 - At least two *b*-jets with $p_T > 40 \text{ GeV}$
- Signal regions built with E_T^{miss} and H_T cuts (SR4, SR5 and SR6 aiming at stop production)
- SM background evaluation:
 - "Fake-lepton" background:
 Control sample with loose leptons scaled with probability of passing tight selection
 - Charge flip:
 Semi data-driven
 - Rare SM processes producing SS leptons:
 Directly from MC

	SR4	SR5	SR6	
No. of jets	≥ 2	≥ 2	≥ 2	
No. of btags	≥ 2	≥ 2	≥ 2	
₽ _T	≥ 50 GeV	≥ 50 GeV	≥ 120 GeV	
H_{T}	≥ 200 GeV	≥ 320 GeV	≥ 320 GeV	
q-flip BG	0.3 ± 0.1	0.12 ± 0.03	0.026 ± 0.009	
Fake BG	1.5 ± 1.1	0.81 ± 0.78	0.15 ± 0.45	
Rare SM BG	2.0 ± 1.0	1.04 ± 0.52	0.39 ± 0.20	
Total BG	3.7 ± 1.5	2.0 ± 0.9	0.6 ± 0.5	
Event yield	5	2	0	

CMS 2ℓ SS + b-jets + E_T^{miss} (4.7 fb⁻¹): Interpretation

- Results interpreted in two models:
 - Model A1: $\tilde{g}\tilde{g}$ production with $\tilde{g}\to t\bar{t}\tilde{\chi}^0_1$ (off-shell stop), same as in ATLAS analysis
 - \circ Model A2: $\tilde{g}\tilde{g}$ production with $\tilde{g}\to \tilde{t}_1t\to t\bar{t}\tilde{\chi}^0_1$ (on-shell stop) with fixed $m_{\tilde{\chi}^0_1}=$ 50, 150 GeV

ATLAS GMSB 2ℓ SF-OS + b-jets + $E_{\rm T}^{\rm miss}$ (2.05 fb⁻¹)

- Only LHC result about direct stop searches so far was obtained within the context of GMSB models with light higgsinos
- Model parameters: $m_{\tilde{q}_3} = m_{\tilde{u}_3} = -A_t/2$; $\tan \beta = 10$
- \bullet Light higgsinos: $\tilde{\chi}^0_1$ and $\tilde{\chi}^\pm_1$ almost degenerate in mass
- ullet Only $ilde{t}_1 ilde{t}_1^*$ pair production considered
- Squark and gluino mass above 2 TeV
- Stops decays: $\tilde{t}_1 o b \tilde{\chi}_1^+$ or $\tilde{t}_1 o t \tilde{\chi}_{1(2)}^0$ (if kinematically allowed)
- Neutralino decays: BR($\tilde{\chi}_1^0 \to Z\tilde{G}$)=0.65-1 for $m_{\tilde{\chi}_1^0}=100-350$ GeV

- Expected signal: two b-jets, decay products of Z (or h) and large E_T^{miss} from the undetected gravitinos.
- ullet Exploring signature with 2 same-flavor opposite-sign leptons, b-jets and $E_{\mathrm{T}}^{\mathrm{miss}}$

ATLAS GMSB 2ℓ SF-OS + b-jets + $E_{\rm T}^{\rm miss}$ (2.05 fb⁻¹)

- Analysis selection:
 - Single electron and muon+jet triggers
 - Two same-flavor opposite-sign leptons (e or μ) with $p_{\rm T} > 20$ GeV (leading lepton $p_{\rm T} > 25$ GeV if it is an electron)
 - \circ Invariant mass: 86 $< m_{\ell\ell} <$ 96 GeV
 - At least two jets with $p_T(\text{jet}_{1,2}) > 60,50 \text{ GeV}$
 - \circ At least one *b*-jet with $p_{\rm T} > 50~{\rm GeV}$
- Signal regions: SR1 ($E_{\rm T}^{\rm miss} > 50$ GeV) and SR2 ($E_{\rm T}^{\rm miss} > 80$ GeV)
- SM background evaluation:
 - Top: with transfer factors from control region of inverted $m_{\ell\ell}$
 - Z+hf: from MC and validated in low-E^{miss} control regions
 - Fake leptons (W+jets, multi-jet):
 Matrix method
 - Diboson, $t\bar{t} + X$: from MC

Summary

- \bullet Several searches for stop performed with 2.05-4.7 fb $^{-1}$ of LHC data in ATLAS and CMS
- Exploring signatures with one or several b-jets, one or two leptons (same-sign or opposite-sign), jets and E_T^{miss}
- No excess observed so far:
 - Model independent limits on $\sigma \times \epsilon \times A$
 - O Interpretations within specific models $(\tilde{g} \to t\bar{t}\tilde{\chi}_1^0, \, \tilde{g} \to \tilde{t}_1 t \text{ with } \tilde{t}_1 \to t\tilde{\chi}_1^0 \text{ or } \tilde{t}_1 \to b\tilde{\chi}_1^\pm)$ or GMSB scenarios
 - \circ CMS limit in $\tilde{g} \to t \bar{t} \tilde{\chi}_1^0$ model with 2-lep (SS) + b-jets: \tilde{g} mass of 740 GeV $(m(\tilde{\chi}_1^0) <$ 380 GeV) [CMS-PAS-SUS-11-020]
 - Summary of ATLAS limits:

 Updates to full 2011 dataset and other analyses for direct stop production in preparation → Results about regions never probed before: STAY TUNED!

BACKUP

Pre-LHC Results on Stop Searches

ATLAS and CMS Experiments

Data Taking in 2011

