NEW PHYSICS IN TOP PRODUCTION AND DECAY

JURE ZUPAN
U. OF CINCINNATI

OUTLINE

- NP in ttbar production
 - mostly about A_{FB}
- NP in top decays

NP IN TTBAR PRODUCTION

THE PROBLEM

see also talk by Christopher Neu

- indications that A_{FB}^{ft} at Tevatron is anomalously large
- charge asymmetry A_C at the LHC in agreement with the SM
 - also other constraints
- does this exclude NP interpretations of A_{FB}^{tt} ?

DEFINITIONS

• *A_{FB}* at Tevatron

$$A_{FB}^{t\bar{t}} = \frac{\sigma_F - \sigma_B}{\sigma_F + \sigma_B}$$

• A_C at the LHC

$$A_C = \frac{N(\Delta|y| > 0) - N(\Delta|y| < 0)}{N(\Delta|y| > 0) + N(\Delta|y| < 0)}$$

$$\left[\Delta |y| \equiv |y_t| - |y_{\overline{t}}|
ight]$$

ORIGIN OF THE ASYMMETRIES

• nonzero A_{FB} and A_C from $(\hat{u}-\hat{t})$ -odd contributions

$$\left\{\hat{t},\hat{u}=m_t^2-rac{\hat{s}}{2}[1\mpeta_t\cos heta]
ight\}$$

$$eta_t = \sqrt{1 - rac{4m_t^2}{\hat{s}}}$$

• in QCD at $O(\alpha s^3)$

Kuhn, Rodrigo hep-ph/9802268; hep-ph/9807420 Ahrens et al, 1106.6051

additional EW contribs.

Hollik, Pagani, 1107.2606 Kuhn, Rodrigo, 1109.6830

- SM predictions
 - Tevatron: $(A_{FB})^{SM} \sim 7-9\%$ ($\bar{q}q$ init. state dominates)
 - LHC: $(A_C)^{SM} \sim 1\%$ (gg init. state dominates)

precisely measured inclusive observables

Kidonakis, 1009.4935; 1105.3481 Beneke et al., 1109.1536

> CDF, Public Notes 9913, 10398, 10807 D0, 1107.4995

• $\sigma = (7.50 \pm 0.48) \text{pb}$

 A_{FB} =0.187±0.037*

*naive average of CDF&D0

• $\sigma = (7.50 \pm 0.48) \text{pb}$

 A_{FB} =0.187±0.037*

9913, 10398, 10807 D0, 1107.4995

*naive average of CDF&D0

precisely measured inclusive observables

Kidonakis, 1009.4935; 1105.3481 Beneke et al., 1109.1536 Ahrens et al., 1003.5827

CDF, Public Notes 9913, 10398, 10807

D0, 1107.4995 CDF, 0903.2850

exclusive m_{tt} observables sensitive to NP

• $\sigma^h = \sigma (700 \text{GeV} < m_{tt} < 800 \text{GeV})$

 $A_{FB}^h = A_{FB}(m_{tt} > 450 \text{GeV})$

J. Zupan New physics in top...

Chicago, May 3, 2012

precisely measured inclusive observables

Kidonakis, 1009.4935; 1105.3481 Beneke et al., 1109.1536 Ahrens et al., 1003.5827

9913, 10398, 10807

D0, 1107.4995 CDF, 0903.2850

CDF, Public Notes

• exclusive m_{tt} observables sensitive to NP

 $\sigma^h = \sigma(700 \text{GeV} < m_{tt} < 800 \text{GeV})$

 $A_{FB}^h = A_{FB}(m_{tt} > 450 \text{GeV})$

J. Zupan New physics in top...

Chicago, May 3, 2012

charge asymmetries at Tevatron vs. LHC

Kidonakis, 1009.4935; 1105.3481 Beneke et al., 1109.1536 Ahrens et al., 1003.5827

• no deviations seen at the LHC!

• $A_C=0.001\pm0.014$

 $A_C^h = -0.008 \pm 0.047$

CMS, PAS-TOP-11-306 ATLAS-CONF-2011-106

ATLAS, 1203.4211

*naive average of CDF&D0

J. Zupan New physics in top...

9

Chicago, May 3, 2012

THE NEW PHYSICS MODELS

- Working hypothesis: A_{FB} is due to New Physics
- since the effects are large ⇒ tree level
 - *t*-channel or *s*-channel?

- "light NP" ~ O(300-500 GeV)
- or "heavy NP" ~ O(2TeV)

NEW PHYSICS MODELS

for review see Kamenik, Shu, JZ,1107.5257

- light NP (~300-400 GeV) models
 - *t*-channel

Jung, Murayama, Pierce, Wells, 0907.4112

- vectors: $Z': \bar{u}u \rightarrow tt$, $W': \bar{d}d \rightarrow tt$ Cheung, Keung, Yuan, 0908.2589
- scalar: H': ūu→tt

Blum, Hochberg, Nir, 1107.4350

- colored and flavor multiplet variants
- Shu, Tait, Wang, 0911.3237; Arhrib, Benbrik, Chen, 0911.4875; Ligeti, Tavares, Schmaltz,1103.2757;. Dorsner, Fajfer, Kamenik, Kosnik, 0912.0972; Cao,McKeen, Rosner, Shaughnessy, Wagner, 1003.3461
 - scalars: color triplet, sextet diquarks: $\bar{u}u \rightarrow tt$
- s-channel

Ferrario ,Rodrigo, 0906.5541; Frampton, ShuWang, 0911.2955 Tavares, Schmaltz, 1107.0978; Aguilar-Saavedra, Perez-Victoria, 1107.2120

• axigluon: $\bar{u}u \rightarrow tt$ and $\bar{d}d \rightarrow tt$

NEW PHYSICS MODELS

Blum, Delaunay, Gedalia, Hochberg, Lee, Nir, Perez, Soreq,1102.3133;
Delaunay, Gedalia, Hochberg, Perez, Soreq,1103.2297;
Aguilar-Saavedra, Perez-Victoria,1103.2765

- heavy NP (~2TeV)
 - perturbative bounds at ~10TeV
 - usually can apply EFT
 - realizations: some type of axigluon
- word of caution ("light" and "heavy" NP):
 - mostly these are just "effective models"
 - assume one low lying resonance, complete
 UV model usually not specified

NONTRIVIAL MODELS

- Models have to be nontrivial
 - no significant effect in $d\sigma/dM_{tt}$
 - large A_{FB} , but small A_C
 - constraints from dijets
 - same sign tops
 - atomic parity constraints
 - single top production
 - flavor constraints

RELATING AFB TO AC

• A_C and A_{FB} both arise in charge asymmetric part of $\sigma(q\bar{q} \rightarrow t\bar{t}) \propto ... + ... (\hat{u}-\hat{t})$

• rigid positive correlation of A_{FB} and A_C for

two cases

if NP couples flavor universally

• or if dominated by only *u* or *d* in initial state

AFB PRESENT CONSTRAINTS

- LHC measurements of A_{FB} have an impact
 - Z' and W' are incompatible with A_{FB}

some tension for other light NP models

AFB DOES NOT IMPLY AC

- in relating A_{FB} and A_C crucial assumption of universality or dominance Drobnak, Kamenik, JZ, in preparation
- if coupling to *u* and *d* different, but comparable
 - the correlation can be lost
- an example: simple change to axigluon model of Tavares and Schmaltz
 - introduce parity violation in extra vectorlike fermion sector
 - A_{FB} and A_C completely independent
 - A_C can be zero (if cancelations) or even negative
 - possible to be (almost) at central values of top observables at LHC and Tevatron simultaneously

AFB DOES NOT IMPLY AC

• in relating A_{FB} and A_C crucial assumption of universality

or dominance

if coupling to u and d dif

- the correlation can be
- an example: simple chan and Schmaltz
 - introduce parity viola sector
 - A_{FB} and A_C completely

- A_C can be zero (if cancelations) or even negative
- possible to be (almost) at central values of top observables at LHC and Tevatron simultaneously

SAME SIGN TOPS

see also talk by Tobias Golling

- Z' also problems with same sign top production
- not a problem for flavor multiplet models

SAME SIGN TOPS

see also talk by Tobias Golling

- Z' also problems with same sign top production
- not a problem for flavor multiplet models

LHC CONSTRAINT ON TTBAR SPECTRUM

note: EW Sudakov logs reduce the tail by ~10%

Trott, Manohar, 1201.3926

- in principle more room for NP
- on the border of being constraining for heavy
 NP models (axigluon of EFT)

ay 3, 2012

LHC CONSTRAINT ON TTBAR SPECTRUM

note: EW Sudakov logs reduce the tail by ~10%

Trott, Manohar, 1201.3926

- in principle more room for NP
- on the border of being constraining for heavy
 NP models (axigluon of EFT)

 See also ATLAS-CONF-2012-029

DIJET CONSTRAINTS

- dijet constraints
 - search for narrow resonances
 - angular distributions
- very constraining
 - go away for wide resonances
 - or when $g_u \ll g_t$

ATOMIC PARITY VIOLATION

- in order to have large A_{FB} NP axial currents
 - will also show in atomic PV exps.
 - for scalars calculable
 - for vectors need
 a complete UV model
- the models H', Z' tried
 by Gresham et al. are
 in tension with atomic PV

ADDITIONAL SIGNALS AT COLLIDERS

- some signals are quite generic for many *t*-channel models
 - a t+j resonance in $pp \rightarrow t$ tbar+j Dorsner, Fajfer, Kamenik, Kosnik, 0912.0972 Gresham, Kim, Zurek, 1102.0018
 - in addition use also distrib. in $cos\theta_{tj}$

ADDITIONAL SIGNALS AT COLLIDERS

• some signals are quite generic for many t-channel

ADDITIONAL SIGNALS AT

SPIN MEASUREMENTS

- chiral couplings
 - spin correlations between ttbar
 - polarization of t or tbar
- Tevatron and LHC not yet constraining
- Krohn, Liu, Shelton, Wang, 1105.3743; Degrande et al., 1010.6304; Godbole, Rao, Rindani, Singh, 1010.1458; Cao, Wu, Yang, 1011.5564; Jung, Ko, Lee, 1011.5976; Choudhury et al., 1012.4750; Cao et al., 1109.6543; Bai, Han, 1106.5071; Falkowski, Perez, Schmaltz, 1110.3796; Berger et al., 1201.1790; Fajfer, Kamenik, Melic, 1205.0264
- need ~10-20% precision at Tevatron, ~2%-5% at LHC
- very important discriminator
 - only axigluon small spin obs. (~2% at LHC, ~5% at Tevatron)

BBAR A_{FB}

• another important obs.: bb A_{FB}

Strassler, 1102.0736;

Kahawala, Krohn, Strassler, 1108.3301

- would generically expect effects
- relation to tt A_{FB} is model dependent

M	M _{bb} (GeV)			A _{FB} (in %)						
35	-	75	X.YZ	±	0.96	(stat)	±	0.05	(syst)	
75	-	95	X.YZ	±	1.15	(stat)	±	0.11	(syst)	
95	-	130	X.YZ	±	1.57	(stat)	±	0.1	(syst)	
:	> 13	0	X.YZ	±	2.56	(stat)	±	0.68	(syst)	

Integrated
$$\mathcal{A}_{\mathcal{FB}}$$
: $A_{FB} = X.YZ \pm 0.62(stat) \pm 0.10(syst)$

Bartos for CDF, talk at Top physics workshop, CERN, May 2, 2012

- another imp
- would gener
- relation to 7t

M _{bb} (GeV)					
35	-	75	>		
75	•	95	>		
95	_	130)		

Tevatron	$A_{b\overline{b}}$	$m_{b\overline{b}}> \ 100 \; { m GeV}$	$m_{b\overline{b}} > 200~{ m GeV}$	$m_{b\overline{b}} > 300 \; ext{GeV}$
Inclusive	0.004	0.011	0.029	0.060
	(2)	(3)	(4)	(6)
Δy	0.004	0.010	0.026	0.057
> 1.5	(2)	(3)	(4)	(6)
$p_{\perp}^{bar{b}} < 10~{ m GeV}$	0.004	0.014	0.044	0.095
	(2)	(5)	(7)	(10)

Rodrigo, talk at Top physics workshop, CERN, May 3, 2012

Integrated \mathcal{A}_{gg} : $A_{FB} = X.YZ \pm 0.62(stat) \pm 0.10(syst)$

Bartos for CDF, talk at Top physics workshop, CERN, May 2, 2012

23

SUMMARY OF AFB

- tight constraints on the models that can explain A_{FB}
- most models are dead = provide an improvement over SM < 1sigma
- preferred model is axigluon
 - light axigluon needs large decay width, $\Gamma \sim 0.2m$
 - heavy axigluon needs $g_u \ll g_t$
 - could be our first sign of strongly coupled EWSB sector or just a mirage...

OTHER NP PHENOMENA IN TOP PRODUCTION

see talks by LianTao Wang, Rick Cavanaugh, Tobias Golling

- heavy ttbar resonances
- enhanced 4top signal
- monotops= single top+MET
 - can be the dominant sign of DM production

- production through FV vertex c→tχχ
- dominates for scalar interactions

Kamenik, JZ, 1107.0623 Andrea et al, 1106.6199

NP IN TOP DECAY

NONSTANDARD TOP DECAYS

see also talk by Kevin Black

- NP can induce nonstandard (rare) top decays
 - FCNC: $t \rightarrow qZ$, $q\gamma$, qg (q=u,c)
 - charge decays: $t\rightarrow bW$, sW, dW
 - exotica: $t \rightarrow qX$ (X=invisible, H^+ ...)
- difficulty:
 - top decay width is "large", no CKM suppression
 - compared to b, c decays probe smaller scales for general FV
- motivation: top is heavy, could directly "feel" NP
 - compositness, extended higgs sector,

FCNC TOP DECAYS

- FCNC decays of top rare in SM
- already constraints from B physics
 - $t\rightarrow cZ$: LL operators nothing new from LHC
- LR and RR operators are being constrained by LHC
 - CMS: $Br(t\rightarrow cZ)<0.34\%$ (4.6 fb⁻¹) CMS PAS TOP-11-028
 - ATLAS: Br($t \rightarrow qZ$)<1.3% (0.70 fb⁻¹) ATLAS-CONF-2011-154

Fox et al, 0704.1482	C^u_{LL}	_	$\overline{Q}_3 \sigma^{\mu u} \sigma^a ilde{H} \Big] c_R ilde{h}$		C_{LR}^w	C_{LR}^b	C^u_{RR}
direct bound	_	$= O_{LR}^b = g_1 \left[\overline{Q}_3 \sigma^{\mu u} ilde{H} ight] c_R B_{\mu u} + ext{h.c.} ,$			6.3	9.0	
LHC sensitivity	0.20	$O^u_{RR}=iar t_{R'}$	$O^u_{RR} = i ar t_R \gamma^\mu c_R igg[H^\dagger \stackrel{\longleftrightarrow}{D}_\mu H igg] + ext{h.c.} .$			0.15	0.20
Λ for $C_i = 1$ (min)	$3.9\mathrm{TeV}$	8.5 1ev	2.0 1ev	2.0 1eV	$0.8\mathrm{TeV}$	$0.4\mathrm{TeV}$	$0.3\mathrm{TeV}$
$\mathcal{B}(t o cZ) \; (ext{max})$	7.1×10^{-6}	3.5×10^{-7}	3.4×10^{-5}	8.4×10^{-6}	4.5×10^{-3}	5.6×10^{-3}	0.14
$\mathcal{B}(t o c \gamma) \; (ext{max})$	-		1.8×10^{-5} 4.8×10^{-5}		2.3×10^{-3}	3.2×10^{-2}	
LHC Window	Closed*	Closed*	Ajar	Ajar	Open	Open	Open

CHROMOMAGNETIC DECAYS

bounds on FV chromomagnetic op

$$\mathcal{L} = g_s \sum_{q=u,c} rac{\kappa_{tqg}}{\Lambda} ar{t} \sigma^{\mu\nu} T^a (f_q^L P_L + f_q^R P_R) q G_{\mu\nu}^a + h.c. \,,$$
Gao et al., 1104.4945

• the bounds translate to $\Lambda/\kappa_{ugt}>140~{\rm TeV}$ $\Lambda/\kappa_{cgt}>60~{\rm TeV}$

• most probably due to loop, then $\Lambda \sim 16\pi^2 m^2/v$ and $m/g_{ugt} > 0.5$ TeV $m/g_{cgt} > 0.3$ TeV

OTHER DECAYS

• anomalous $t \rightarrow Wb$ CC

$$\mathcal{L}_{tWb} = \mathcal{L}_{tWb}^{\text{SM}} - \frac{g}{\sqrt{2}} \bar{b} \Big[(V_L P_L + V_R P_R) \gamma^{\mu} + \frac{i \sigma^{\mu\nu} q_{\nu}}{m_W} (G_L P_L + G_R P_R) \Big] tW_{\mu}$$

- similar for $t \rightarrow Wb CC$
- constrained from B physics
 - certain ops. are (very!) constrained
 - others not constrained (or weak bounds)
 - complementary to the Tevatron and LHC

OTHER DECAYS

• anomalous $t \rightarrow Wb$ CC

$$\mathcal{L}_{tWb} = \mathcal{L}_{tWb}^{\text{SM}} - \frac{g}{\sqrt{2}} \bar{b} \Big[(V_L P_L + V_R P_R) \gamma^{\mu} + \frac{i \sigma^{\mu\nu} q_{\nu}}{\sigma^{\mu\nu}} (G_L P_L + G_R P_R) \Big] tW_{\mu} \Big]$$

- similar for $t \rightarrow$
- constrained from
 - certain ops. are
 - others not cons
 - complementary

J. Zupan New physics in top...

OTHER DECAYS

• anomalous $t \rightarrow Wb$ CC

$$\mathcal{L}_{tWb} = \mathcal{L}_{tWb}^{\mathrm{SM}} - \frac{g}{\sqrt{2}} \bar{b} \Big[(V_L P_L + V_R P_R) \gamma^{\mu} + \frac{\mathrm{i}\sigma^{\mu\nu} q_{\nu}}{m_{TV}} (G_L P_L + G_R P_R) \Big] tW_{\mu} \Big]$$

CONCLUSIONS

- it is possible that NP contributions to A_{FB} are large, and A_C is SM-like
- axigluon preferred (only surviving?) model for A_{FB}

BACKUP SLIDES

EXPERIMENTAL DATA VS. THE SM

- inclusive A_{FB} at Tevatron (naive average)

 S. Leone [CDF], talk at Moriond EWK 2012; Abazov et al. [DO], 1107.4995
 - A_{FB} =0.187±0.037 vs SM: A_{FB} SM=0.066±0.020 Ahrens et al., 1106.6051
- CDF unfolded
 - $A_{FB}(m_{tt} < 450 \text{GeV}) = 0.078 \pm 0.054 \text{ vs SM}: 0.047$
 - $A_{FB}(m_{tt} < 450 \text{GeV}) = 0.296 \pm 0.067 \text{ vs SM}: 0.100$
- *A_C* at the LHC (naive average)

 [ATLAS] 1203.4211; CMS-PAS-TOP-11-030
 - $A_C=0.001\pm0.014 \ vs \ SM: A_C^{SM}=0.006\pm0.001$
 - ATLAS also has A_C binned in m_{tt}
 - larger errors, agree with SM

"T-CHANNEL" MODELS

- three sets of "t-channel" models
 - large flavor violation: Z', W',H', scalar color sextets, triplets,...
 - flavor conserving: full representations of flavor group SU(3)3
 - not exactly ft, but tt+X (so no interference)
- viable masses ~300-500GeV
- asymmetries driven by Rutherford peak
- LHC measurements have an impact
 - Z' and W' are incompatible with A_{FB}

34

- LHC measurements have an impact
 - Z' and W' are incompatible with A_{FB}

DECORELATING AFB AND AC

- assume NP couples differently to u and d
- the largest difference due to different valence structure
 - pp̄ at Tevatron, pp at LHC
 - ūu:đd luminosity funct. are 4:1 at Tevatron, 2:1 at the LHC (at large x)
- perform EFT analysis
 - just two operators that can give AFB

$$\mathcal{L} = \mathcal{L}_{ ext{SM}} + \sum_{q=u,d} rac{C_A^{qt}}{\Lambda^2} (ar{q} \gamma^\mu \gamma_5 q) (ar{t} \gamma_\mu \gamma_5 t) \,.$$

- can have large A_{FB} and small (zero, or even negative) A_C if
 - C_A^{ut} and C_A^{dt} have opposite signs
 - and $|C_A^{ut}| \leq |C_A^{dt}|$

Drobnak, Kamenik, JZ, in preparation Chicago, May 3, 2012

ON SHELL MODELS

- the EFT discussion motivates the necessary changes to on-shell models
- an example: asymmetric axigluon model
 - a simple modification of axigluon model of Schmaltz, Tavares
 - SSB of $SU(3)_L \times SU(3)_R \rightarrow SU(3)_C$

Schmaltz, Tavares, 1107.0978

- SM fermions *Q*~(3,1), *U*,*D*~(1,3)
- extra fermions for anomaly cancellation
 - here the only modification in this sector we allow for parity breaking
- strong gauge interactions still parity invariant $(g_L=g_R)$
- after SSB: $\mathcal{L} = -\frac{1}{4}(G^a)^2 \frac{1}{4}(\tilde{G}^a)^2 + \frac{\tilde{m}^2}{2}\tilde{A}^2 + \bar{Q}(i\not{D} \tilde{g}_Q\tilde{A})Q + \bar{U}(i\not{D} + \tilde{g}_U\tilde{A})U + \bar{D}(i\not{D} + \tilde{g}_D\tilde{A})D + \dots,$

FURTHER COMMENTS ON AXIGLUON COUPLINGS

- from EFT: need sizeable coupling
 - for $g_i \sim O(1)$ sizeable widths $\Gamma \sim 0.1m$
- nonuniversality of $g_{Q,D,U}$ \Rightarrow vectorial couplings to quarks
 - increase the ttbar cross section
 - unless below threshold
- there is a solution that has correct AFB, AC, sigma tt
- to avoid paired dijet constraints (constraints onpair production)
 - decay with of Γ ~0.2m needed
 - a factor of 2 larger than in the considered model
 - generation dependent coupling (or extra channels?)

FURTHER COMMENTS ON AXIGLUON COUPLINGS

- from EFT: need sizeable coupling
 - for $g_i \sim O(1)$ size
- nonuniversality
 - increase the ttl
 - unless below t
- there is a solution
- to avoid paired d production)
 - decay with of

- a factor of 2 larger than in the considered model
- generation dependent coupling (or extra channels?)

FURTHER COMMENTS ON AXIGLUON COUPLINGS

- from EFT: need sizeable coupling
 - for $g_i \sim O(1)$ sizeable widths $\Gamma \sim 0.1m$
- nonuniversality of $g_{Q,D,U}$ \Rightarrow vectorial couplings to quarks
 - increase the ttbar cross section
 - unless below threshold
- there is a solution that has correct AFB, AC, sigma tt
- to avoid paired dijet constraints (constraints onpair production)
 - decay with of Γ ~0.2m needed
 - a factor of 2 larger than in the considered model
 - generation dependent coupling (or extra channels?)