#### **Theory: Direct EWK-ino**



Based on: work done in the last century or yesterday's talks

> LHC physics workshop Chicago, May 4, 2012

#### Outline

- What is an EWK-ino?
- What are the current limits on EWK-inos?
- Why hasn't the LHC found them yet?
- How do you search for EWK-inos directly?
- Why are (final states with) taus important?
- How "model-independent" are the EWK-ino bounds in terms of simplified models?
- How can theorists reinterpret EWK-ino searches at the LHC?

#### What is EWK-ino?

- EWK-ino = Neutralino, other light stuff.
- For the purposes of this talk:
  - basically the charginos and neutralinos in SUSY.
  - but do not include the LSP (Bino or gravitino)
    - direct DM production needs an ISR tag: monojet signature Birkedal,KM,Perelstein; Beltran,Hooper,Kolb,Krusberg,Tait; Bai,Fox,Harnik

| 12:00        | Lunch (1h0')                                                                                                                                  |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| MET          | 12:35 ->15:35 ) Chairperson: Joe Lykken, Rick Cavanaugh (University of Illinois at Chicago (US))                                              |
|              | Location: 300                                                                                                                                 |
| 13:00<br>38. | Experiment: Light stops (20')       Ximo Poveda Torres (Physics Department)                                                                   |
| 13:20<br>39. | Theory: Light stops (20')       Stephen Martin (Northern Illinois University)                                                                 |
| 13:40<br>40. | Experiment: Direct EWK-ino (20') Sanjay Padhi (Department of Physics)                                                                         |
| 14:00<br>41. | Theory: Direct neutralino, other light stuff (20')         Konstantin Matchev (University of Florida (US))                                    |
| 14:20<br>42. | Experiment: Presentation of scientific results (20') Maurizio Pierini (CERN)                                                                  |
| 14:40<br>43. | Theory: Presentation of scientific results         Scott David Thomas (Rutgers, State Univ. of New Jersey (US))           (20')         (20') |

# Gluinos and squarks are the low hanging fruit

Colored superpartners have larger cross-sections



# Gluinos and squarks are the low hanging fruit

Colored superpartners have larger cross-sections



# Gluinos and squarks are the low hanging fruit

Colored superpartners have larger cross-sections





See Danielle's talk yesterday 5

#### 20-th century expectations

- Jetty channels always showed better reach
- Lepton channels were considered more reliable



#### EWK-inos are the tastier fruit

- Jetty signature suffer from large QCD backgrounds
- Lepton signatures are clean
  - EWK-inos may give leptons







### The gold-plated SUSY mode

- Run II SUSY-Higgs workshop, SUGRA WG report:
  - "the clean trilepton channel from C<sub>1</sub>N<sub>2</sub> production potentially offers the greatest reach at luminosity upgrades of the Tevatron, and has, therefore, received the maximum attention"



### The gold-plated SUSY mode

- Run II SUSY-Higgs workshop, SUGRA WG report:
  - "the clean trilepton channel from C<sub>1</sub>N<sub>2</sub> production potentially offers the greatest reach at luminosity upgrades of the Tevatron, and has, therefore, received the maximum attention"

V. Barger, C. Wagner





#### Unintended "discoveries"





see Sunil's talk yesterday



- What about the "irrelevant" parameters?
  - squark mass
  - higgsino parameter mu

#### Be careful how you interpret

- The cross-section depends on the squark mass

   destructive interference
- The BR's of EWK-inos to right-handed sleptons depend on the higgsino-ness of the EWK-inos

- only tau leptons



#### Taus are important

- EWK-inos may decay predominantly to taus, especially at large tan beta.
  - also see talks in the tau physics session this morning



#### Why are taus important?

- Staus are lighter than selectrons and smuons
  - stau mixing
  - Yukawa terms in the RGEs
- EWK-inos may have no other choice but decay to taus



#### Leptons and taus from EWK-inos

• To lepton or to tau: that is the question

| Experimental         | Trilepton SUSY signal |                |                |                |  |
|----------------------|-----------------------|----------------|----------------|----------------|--|
| signature            | τττ                   | $	au 	au \ell$ | $\tau\ell\ell$ | $\ell\ell\ell$ |  |
| $	au_h 	au_h 	au_h$  | 0.268                 |                |                |                |  |
| $\ell \tau_h \tau_h$ | 0.443                 | 0.416          |                |                |  |
| $\ell\ell	au_h$      | 0.244                 | 0.458          | 0.645          |                |  |
| lll                  | 0.045                 | 0.126          | 0.355          | 1.00           |  |

#### Lykken,KM (1999)





|                        | Experimental signatures |                      |                          |                          |                         |  |  |  |
|------------------------|-------------------------|----------------------|--------------------------|--------------------------|-------------------------|--|--|--|
|                        | $\ell\ell\ell E_T$      | $\ell\ell\tau_h E_T$ | $\ell^+\ell^+\tau_h E_T$ | $\ell \tau_h \tau_h E_T$ | $	au_h 	au_h 	au_h E_T$ |  |  |  |
| ZZ                     | $0.196 \pm 0.028$       | $0.334 \pm 0.036$    | $0.094 \pm 0.019$        | $0.181 \pm 0.027$        | $0.098 \pm 0.020$       |  |  |  |
| WZ                     | $1.058 \pm 0.052$       | $1.087 \pm 0.053$    | $0.447 \pm 0.034$        | $1.006 \pm 0.051$        | $0.248 \pm 0.025$       |  |  |  |
| WW                     |                         | $0.416 \pm 0.061$    | _                        | $0.681 \pm 0.078$        | $0.177 \pm 0.039$       |  |  |  |
| $t\overline{t}$        | $0.300 \pm 0.057$       | $1.543 \pm 0.128$    | $0.139 \pm 0.038$        | $1.039 \pm 0.105$        | $0.161 \pm 0.041$       |  |  |  |
| Zj                     | $0.112\pm0.079$         | $7.34 \pm 0.64$      | $0.168\pm0.097$          | $20.3 \pm 1.1$           | $17.9 \pm 1.0$          |  |  |  |
| Wj                     | _                       | _                    |                          | $37.2 \pm 2.9$           | $6.1 \pm 1.2$           |  |  |  |
| $\sigma_{BG}^{ m tot}$ | $1.67 \pm 0.11$         | $10.7\pm0.7$         | $0.85 \pm 0.11$          | $60.4 \pm 3.1$           | $24.7 \pm 1.6$          |  |  |  |



#### Advertisement

 How can theorists recast LHC results for other models? See Maurizio's talk.



### Summary

- It is time to reach for the high hanging fruit
- Direct EWK-ino searches are already under way
- (Final states with) taus are important

