

Congrats to LHC! Thanks to ATLAS \& CMS!

tau's have been identified in W/Z decays:

[ATLAS arXive:1204.6720.]

See next talks by Sridhara, Zofia.

Why tau's

Example 2: Leading Signal for $\mathrm{H}^{ \pm}$:

$$
\text { MSSM } H^{+} \bar{\nu} \tau^{-}: i \frac{m_{\tau} \tan \beta}{\sqrt{2} v}\left(\frac{1+\gamma^{5}}{2}\right)
$$

An important $H^{-} \rightarrow \tau_{R}^{-} \bar{\nu}_{R} ; \quad H^{+} \rightarrow \tau_{L}^{+} \nu_{L}$.
feature: $\quad W^{-} \rightarrow \tau_{L}^{-} \bar{\nu}_{R} ; \quad W^{+} \rightarrow \tau_{R}^{+} \nu_{L}$.

- Polarization in hadronic decays:
$\frac{1}{\Gamma} \frac{d \Gamma\left(\tau^{ \pm} \rightarrow \pi^{ \pm} \nu\right)}{d \cos \theta}=B R_{\pi} \frac{1}{2}\left(1 \mp P_{\tau} \cos \theta\right)$
$\frac{1}{\Gamma} \frac{d \Gamma\left(\tau^{-} \rightarrow v^{-} \nu\right)}{d \cos \theta}=B R_{v} \frac{1}{2}\left(1+\frac{m_{\tau}^{2}-2 m_{v}^{2}}{m_{\tau}^{2}+2 m_{v}^{2}} P_{\tau} \cos \theta\right)$
$\cos \theta=\frac{2 E_{m} / E_{\tau}}{1-m_{m}^{2} / m_{\tau}^{2}}-1$

Chep-ph/0311083, Q.H.Ca
Kanemura, C.-- Yuan]
τ^{+}is left-handedly polarized in $H^{+} \rightarrow \tau^{+} \nu$, and right-handedly polarized in $W^{+} \rightarrow \tau^{+} \nu$.

In light of the current SM Higgs searches:

[arXive:1006.2904, Christensen, Han, Su]

Why tau's
B. Lightest S-lepton $\tilde{\mathcal{T}}$ RGE running: The large Yukawa drags its mass lower

[arXive:1006.2904, Lykken, Matchev.]
11

tau's: vehicle for further studies:
Probing coupling [arXive:1006.2904, Kitano et cl.]

$$
\tilde{\chi}^{0} \rightarrow \tau \tilde{\tau}
$$


```
Why tau's
D. Unique Properties for observation:
    Displaced Vertex:
        \ell\tau}\approx87\mu
    Signal identification, background separation
    Decay products collimated:
        when }\mp@subsup{E}{\tau}{}>>\mp@subsup{m}{\tau}{
    Simple collinear kinematics
        tau's for new physics:
        Theoretically: hopeful
        Experimentally: playful
```


