

Focus on Higgs Sector

Since this is not an official CMS talk, I decided to acknowledge the great contributions (my personal judgement) of graduate students in the CMS tau group explicitly.

Sridhara Dasu (Wisconsin)

1

The good

- Single prong: well measured isolated charged hadron
- Three prong: softer well measured and vertexed charged hadrons

The bad

- n π^0 s leading to 2n γ s -- π^0 not always reconstructed fully
- EM energy clusters spread out in φ -strips

The ugly

 Missing neutrino: fit the missing momentum vector and secondary vertex of visible τ-pair components

Single Prong Three Prong Single Prong + Strip ^{5/4/12} Sridhara Dasu (Wisconsin)

Φ

Strip

Strip

0.05

0.20

т lepton reconstruction

JINST 7 (2012) P01001

- Bachtis (Wisconsin), Friis (Davis)
 - Instead of jets of narrow cone, shrinking cone ... we truly reconstruct taus
 - In single and three prong modes, adding neutral pizeros
 - Decay mode algorithms HPS and TaNC
 - Established HPS algorithm and analysis techniques for τ physics

Z to тт : 2010 Data

J. High Energy Phys. 08 (2011) 117

- Bachtis (Wisconsin), Friis (Davis), Swanson (Wisconsin), Cutajar (Imperial)
 - Measure Z to $\tau\,\tau\,$ cross section and τ identification efficiency
 - Necessary precursor to searches for higgs decays in τ modes

Clean Z signals in τ modes enabled cross section measurement + simultaneously extract τ ID efficiency.

Z to TT Cross Section

Taus are legit!

5

Generating masses for weak bosons and fermions

- Higgs mechanism provides masses for W and Z
- Yukawa coupling to fermions provides them masses
 - ~10% BR in the low mass region < ~140 GeV

arXiv:1202.4083

- SVFit: Reconstruct tau-pair invariant mass by taking account of MET magnitude, direction, ... better than collinear approximation
- Combine muTau, eTau and eMu mode mass distributions shown •
- Three categories to enhance signal to BG; exploit VBF

- Tau reconstruction yields and energy scale are well understood!
- Tau efficiency, especially at high masses is self-calibrated in the fit. • 6% uncertainty estimated from tag & probe is only relevant in Z region

from a fit to the inclusive tau mass spectrum floating separately the yields of the individual decay modes.

Data/Prediction

Inc

SM Higgs Limit

Bachtis (Wisconsin), Bianchi (LLR), Dutta (MIT)

 Not yet sensitive at SM level, but setting limits on cross section ratio

9

WH to µµт & еµт

CMS-HIG-12-006

- W associated production has low BG, reduced by requiring unlike charges of light leptons, estimated using measured τ -fake probabilities
- Contribution from H to $\tau\tau$ at low, and WW at higher mass ٠
- Clean but low yields •

6

5

4

3

2

Invariant mass of sub-leading lepton and hadronic tau Leading lepton primarily comes from W decay

SM WH Limit

<u>CMS-HIG-12-006</u>

 Not yet sensitive at SM level even here, but set limits on cross section ratio

- Ross, Swanson (Wisconsin), Mohammadi (Tehran), Singh (INFN)
 - Search for H in ZZ modes in $2I2\tau$ final state
 - BG estimated using measured τ -fake probabilities

arXiv:1202.3617v1

There are many possibilites that change the precise predictions of the minimal higgs sector of the Standard Model

- Fourth (heavy) generation of fermions modify H couplings
 - Enhances SM4 higgs cross section over SM
- Fermiophobic higgs perhaps, fermion mass matrices have a different origin from the higgs mechanism
 - Changes low mass higgs production & decays dramatically
- Beyond minimal higgs doublet field
 - Two higgs doublet model (2HDM)
 - Multiple higgs bosons: 3 neutral and 2 charged
 - Minimal Supersymmetric Model (MSSM) requires 2HDM
 - NMSSM, triplets ... have even more higgses
 - Very light pseudoscalar higgs, Doubly charged ...
- This talk focuses on these non-standard higgs bosons

MSSM Higgs

- Higgs sector in SUSY theory is more complicated
 - Need 2 higgs doublets each with 4 degrees of freedom
 - Results in the Standard Model like Higgs (h⁰)
 - Plus, two neutral higgs (A⁰, H⁰) and charged (H[±])
 - However, only 2 parameters (M_A , tan β ratio of the two doublets)
 - Masses of higgs and Z related
 - Search in $(M_A, \tan\beta)$ plane
- Neutral Higgs
 - Look for $\phi = (h^{0, A^0}, H^0)$ in decays to tau-leptons
- Charged Higgs
 - Look for H[±] in top decays

MSSM φ(h, H, A)

- Enhanced coupling to b-quarks and τ-leptons
 - Production rate enhanced $\times tan^2\beta$
 - Gluon fusion with b,t loops + associated b quark production
 - Decays to b-quark and τ -lepton pairs enhanced at all masses

Mass of TT: 2011 Data

arXiv:1202.4083

Tau pairs reconstructed in decays to leptons (e or μ) + hadrons (1 or 3 prong) or two leptons (e μ) Kinematic fit to obtain tau pair mass – used to search for H to $\tau\tau$ contribution Two categories: non-b-tagged and b-tagged to enhance bb φ

NISCONS

Event with τ + MET from H[±] 2 b-jets, 2 jets from W or e/μ + MET from W

Cut progression includes MET, bTags

 2.2 fb^{-1}

Sridhara Dasu (Wisconsin)

19

MSSM Higgs Summary

arXiv:1202.4083

CMS PAS HIG-11-019

5/4/12

- CMS invented some of the best tau-identification methods at hadron colliders
 - Tau algorithms were validated with measurement of Z production in di-tau mode
- CMS made searches sensitive to the minimal higgs of the Standard Model and Beyond
 - No evidence for SM-like nor BSM higgs is found in several models
 - SM: Gluon Fusion, WZ Fusion and W Associated production
 - MSSM: gg¢ and bb¢ production
 - MSSM higgs parameter space is being constrained using modes with τ-leptons
- With the expected 15+ fb⁻¹ sample at 8 TeV, tau-mode measurements are likely to participate prominently in resolving the higgs sector situation at the end of 2012

Tranvserse momentum resolution

- One and three prong ecay modes dominated by the tracker
 - Excellent resolution
- Hadron+strip decay mode dominated by energy loss
 - Material effects, mis-identification of neutral pions 53

The Hadrons+Strips (HPS) Algorithm

- Start from a jet
- Build combinatorially tau decay modes using PF candidates
 - One charged hadron
 - Three charged hadrons
 - One hadron+ strip
 - Strip is introduced to account for material effects
 - As in electrons
- Apply mass requirements on the decay mode
- Apply isolation on a solid cone of 0.5
 - After subtracting tau constituents

54

HPS Efficiency and fake rate

- Efficiency calculated on simulation
- Fake rate calculated on data
 - +compared to simulation
- HPS Algorithm achieves an efficiency of 50-60% for a fake rate <= 1%