

Physics with Tau Lepton Final States in ATLAS

Z. Czyczula, Yale University

Why are taus important in ATLAS?

Discovery searches: Heavy object may couple preferentially to taus (heaviest leptons)

Higgs boson couples to mass

SM H->tautau
2nd largest BR for low mass

MSSM: 5 Higgs bosons h,H,A,H^+/-For large part of parameter space BR is enhanced

- Most of theories predict universal coupling of Z' to leptons, but there are models which predict Z' coupling preferentially to the third generation (Technicolor motivated)
- SUSY decays chains contain soft taus
- Important for completeness

More than discovery probes

Taus are short lived -> spin information imprinted in tau decay product kinematics!

- experimentally possible to distinguish left-handed (LH) from right-handed (RH) taus
- Tau Polarization

$$P_{ au} = rac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L}$$

-Indicates tendency for production of leftand right- handed taus to violate parity

Can help establish properties of a new particle:

- -> RH taus from H+'s vs. LH taus from W's
- -> Z has spin 1 and couplings violate parity => P_{τ} = -15% vs Higgs has spin 0 => P_{τ} =0
- -> Z' and W' degree of parity violation varies between models (possible to constrain E6 models: Phys. Rev. D46 (1992) 290-302)
- Tau spin correlations direct access to spin of the parent object

Possible configurations:
$$\tau^{-}(\tau^{+}) \qquad \tau^{+}(\tau^{-})$$
Spin 1 (Z'): $Z'_{L} \rightarrow \tau_{L}^{-}\tau_{R}^{+}(Z'_{R} \rightarrow \tau_{R}^{-}\tau_{L}^{+})$
Spin 0 (H): $H \rightarrow \tau_{L}^{-}\tau_{L}^{+}(H \rightarrow \tau_{R}^{-}\tau_{R}^{+})$

Taus are experimentally challenging!

Leptonic decays:

-Not viable to distinguish from prompt leptons

Hadronic decays:

- -suffer from huge backgrounds from jets
- => challenge for both online and offline identification

Tau events are rare as compared to QCD

04/05/12

Chicago 2012 workshop on Ll

The ATLAS detector

work

Inner detector ($|\eta|<2.5$): Si strips/pixels; TRT straws. Vertexing, tracking, e/π separation

HAD calorimetry ($|\eta|<5$): segmentation, Fe/scintillator Tiles (central), LAr (fwd) Trigger and measurement of jets and missing E_T

Tau reconstruction and identification (ID) in ATLAS

- Reconstructed taus: Anti-k_⊤ jets with R=0.4
- Energy scale: jets scale + tau scale derived using MC
- data driven uncertainties using single pion response
- Discrimination against QCD jets:
 - low track multiplicity
- narrowness of the shower
- Electron / tau separation
 - Fraction of high threshold hits in TRT & shower shape (hadronic veto)

 ΔR_{max}

04/05/12

Tau ID performance

Output BDT score

Rejection vs efficiency

Efficiency measurement using tag-and-probe

- Z->TT and W->TV events (jet/tau) and Z->ee (e/tau)

3 prongs p.>20 GeV

0.7

BDT Score

0.3 0.4 0.5 0.6

Triggering tau final states in ATLAS

Item	2011	2012	
Single electron	e22	e24	
Single muon	e18	e24	
e-tau	tau16_e15	tau20_e18	
mu-tau		tau20_mu15	
di-tau	tau29_tau20	tau20_tau29	
tau+xe	tau29_xe35	tau29_xe45	
Single tau	tau125	tau125	

Physics streams:

Electron, Muon, JetTauEtMiss

2012 tighter thresholds & isolation

=> more analysis need to rely on the combined triggers

- Jet/MET triggers too high thresholds

L1 based on 4x4 array of trigger towers and EM isolation L2 adds tracking + higher granularity in the calorimeters Applies basic tau shower shape cuts to reject QCD EF full event building. Algorithms imitate offline.

How well do we understand taus in ATLAS?

- W->TV decays: the largest source of true taus in ATLAS
 - used for first observation of true taus
 - cross section measured using full 2010 dataset
 - increasingly difficult @ higher LHC luminosity due online rates

• Main signature:

- Hadronically decaying tau and large missing transverse energy (MET)
- Large multi-jet estimated using data driven ABCD Method (tau ID, MET plane)
- EW: W->ev/μν, Z->mumu backgrounds from MC

- Purity: S/B ~ 4.4

- energy scale
- tau ID & trigger efficiency
- total ~ 15%

04/05/12

Chicago

Tau polarization in W->TV decays

Observable: charged asymmetry

4/05/12

- energy sharing of the charged and neutral pions in the tau decay
- inclusive: all one track tau decays
- P_τ extracted using binned log-likelihood fit
 of the observed distribution in data to
 a linear combination of the MC templates
- Dominant systematics: energy scale and MC model

$$P_{_{\scriptscriptstyle T}} \in [-1, -0.91]$$
 with 95% probability

arXiv:1204.6720v1

First measurement of tau polarization @ hadronic collider Very first direct test of tau helicity structure @ $Q^2 = m_w^2$

Toward Higgs searches: Z->TT cross section

ATLAS-CONF-2012-006

• Cross section measured in e-tau, mu-tau and e-mu channels:

Purity

	$\tau_{\mu}\tau_{h} (1.55 \text{ fb}^{-1})$	$\tau_e \tau_h (1.34 \; { m fb}^{-1})$	$ au_e au_{\mu} (1.55 \; { m fb}^{-1})$
Total background	793 ± 34	449 ± 22	56 ± 8
$\gamma^*/Z \to \tau\tau$	4544 ± 49	2029 ± 25	981 ± 26
Nobs	5184	2600	1035

•Systematics:

- e-tau (13%): energy scale, tau & ele ID, trigger eff
- -mu-tau (10%): energy scale, tau ID
- -04/05/12 (9%): electron ID & energy scale workshop on LHC

Result

H->TT common challenges

Huge irreducible background from Z->TT decays

- peaks close to H mass due to poor mass resolution
- Two fold improvements:
- Use data driven tau embedding on lighter lepton
 (Z->μμ sample) to estimate Z->ττ background
- · Improve mass resolution
 - visible mass
 - collinear mass: assume that visible tau decays products take direction of the parent tau
 - missing mass calculator (MMC): assumes non zero angle between visible decay products and neutrinos)

ATLAS-CONF-2012-014

Events / 10 GeV

12

NIM A654 (2011) 481 (arXiv:1012.4686)

SM H->TT search

Production mechanisms considered in the search:

Search in all tau-pair decay channels:

- Lepton-lepton + 4v:
 - 4 categories: 0 jets, 1 jet, 2 jets VH, 2 jets (VBF)
 - Lepton background estimated using template of sub-lead lepton pt from a control region with revered isolation
- Lepton-hadron + 3v:
 - 4 categories: 0 jets (low and high MET), 1 jet, 2 jets (VBF)
- - Mulit-jet background estimated using SS charge
- hadron-hadron + 2v:
- search in 1 jet category
- 2D track multiplicity fit in the signal region
 04/05/12 Chicago 2012 workshop on LHC physics

SM Higgs limits

95% Cls limits per channel

Chicag

m_H [GeV]

Quick overview of MSSM H->TT search

- Search in all tau-pair channels
- Separation in b-associated production using b-tagging not yet explored

Analysis methods similar to SM Higgs boson searches

Combined limits on $\sigma \times BR$

combined limits in "tanß-ma" space

ATLAS-CONF-2011-132

Quick overview of H->TV search

ATLAS-CONF-2012-011

Charged Higgs predicted by 2HDM (also other BSM models)

Search channels

- Lepton +jets: $t\bar{t} \rightarrow b\bar{b}WH^+ \rightarrow b\bar{b}(q\bar{q}')(\tau_{\rm lep}\nu)$
- Tau+ lepton: $t\bar{t} \to b\bar{b}WH^+ \to b\bar{b}(l\nu)(\tau_{\rm had}\nu)$
- tau+jets $t\bar{t} \rightarrow b\bar{b}WH^+ \rightarrow b\bar{b}(q\bar{q}')(\tau_{\rm had}\nu)$

- Some analysis highlights
 - tau + jets is the most sensitive channel

- lepton + jets challenging!
 suppress W->lv using
 inv mass of b-lep & m_T^H
- => require b-t association

$$\chi^{2} = \frac{(m_{jjb} - m_{\text{top}})^{2}}{\sigma_{\text{top}}^{2}} + \frac{(m_{jj} - m_{W})^{2}}{\sigma_{W}^{2}}$$

Combined limits on BR 1-5%

MSSM (m_h^{max}) excluded values of Tanß >13-26 for 90GeV< m_{ux} <150GeV.

Chicago 2012 workshop on LHC physics

SUSY and taus

Taus are important probes of SUSY breaking mechanism

60

50

70

Λ [TeV]

- GMSB : soft SUSY breaking by gauge interactions
- chiral super-multiplets (messengers) couple to ultimate source of SUSY breaking and (s)quarks, (s)leptons, Higgs(inos) of MSSM

Tau production NLSP L.SP $M_m = 250 \text{ TeV}$ Theor 30 GMSB6 excl $sgn(\mu) = +$ 25 $C_{gray} = 1$ 20 15 CoNLSP 10

20

10

30

SUSY particles excluded up to breaking scale Λ = 30 TeV (up to Λ = 43 TeV for large tan β)

SUSY particles excluded up to breaking scale $\Lambda = 32 \text{ TeV}$ (up to $\Lambda = 47 \text{ TeV}$ for large tan β)

vorkshop on LHC physics

Jets + MET + at least 1 tau (CERN-PH-EP-2012-076)

Jets + MET + at least 2 taus (CERN-PH-EP-2012-054)

Summary

- Tau leptons are vital probes of new physics in ATLAS
 - Heavy objects may couple preferentially to taus (Higgs, technicolor Z',..)
 - The only leptons which provide insight in spin nature of the parent object
 - Decay chains with tau sensitive to SUSY breaking mechanism
- Shown several new results of searches with tau final states
 - No discoveries
 - Most cases limits exceed previous experiments
- Shown first measurement of tau polarization at hadron collider
 - efficacy of the method (& relatively low systematic uncertainty) confirms potential for future spin measurements using taus
 - the first direct measurement of helicity structure in W->TV events

Back-up slides

How can we measure tau polarization?

LH taus - soft, RH taus - hard

n.a in W-> tau nu decays, Z/H->tautau requires tau rest frame (e.g. coll approx)

Explore helicity of rho

$$\cos \psi = rac{m_v}{\sqrt{m_v^2 - 4m_\pi^2}} \; rac{E_{\pi^-} - E_{\pi^0}}{|\mathbf{p}_{\pi^-} + \mathbf{p}_{\pi^0}|},$$

Using tau polarization to constrain models

> If parity violation - Z' couples differently to left- and right-handed fermions

Forward - backward asymmetry

$$A_{FB} = (N_F - N_B)/(N_F + N_B)$$

- Can be measured in all di-lepton final states
- Difficult to define at symmetric pp collisions
- * Need to be convoluted with PDF's

Polarisation asymmetry

$$A_{pol} = (N_L - N_R)/(N_L + N_R) = -P_{ij}$$

P_{ii} - longitudinal polarisation of tau

- Only in tau-pair final states (of leptonic)
- Does not require the knowledge of PDF's

Forward

Backward

 $\rightarrow A_{pol}$ helpful in constraining E_6 model

Using tau polarization to constrain models

• E model: two Z' bosons

Linear combination $Z'(a) = Z'_{\chi} \cos a + Z'_{\psi} \sin a$

is assumed to have mass ~ TeV (within the LHC reach)

Parameter a is free and can by constraint by measurement of Ptau and $A_{_{\mathrm{FR}}}$

Ptau provides better determination of a than equally precise measurement of $\boldsymbol{A}_{\text{FB}}$

(Tau) trigger in ATLAS

L1 based on 4x4 array of trigger towers and EM isolation L2 adds tracking + higher granularity in the calorimeters Applies basic tau shower shape cuts to reject QCD EF full event building. Algorithms imitate offline.