

Photon feed-back & Gain calculations in Micromegas

Özkan ŞAHİN Uludağ University Physics Department Bursa -TURKEY

Source of photon feedback

- ★ Excited states $(A^*) \Rightarrow$ radiative decay $(A^* \rightarrow A + \gamma)$,
- Photons \Rightarrow photo-electrons (from cathode and in gas itself),
- Secondary, delayed avalanches \Rightarrow over exponential increases at high gains:
 - ♦ $G \Rightarrow$ average avalanche size without feedback,
 - ↔ β ⇒ number of secondary avalanches started by one avalanche electron,
 - ★ electrons: 1th step \Rightarrow βG, 2nd step \Rightarrow βG², 3th step \Rightarrow βG³, ...
 - * Summing over each step:

$$G' = G + \beta G^2 + \beta^2 G^3 + \ldots = G/(1 - \beta G)$$

* G` \Rightarrow average avalanche size with feedback.

Energy of photons

* $3p^{5}4s$

- $Ar^{*}(^{3}P_{0}), Ar^{*}(^{3}P_{2})$
 - 11.55 eV, 11.72 eV \Rightarrow Metastables
 - $\tau \Rightarrow$ lifetime of seconds

* $3p^54p$

✤ predominantly decays ⇒ $3p^54s$ red or infrared light (≈ 2 eV)

 $\tau \Rightarrow 21.7 - 40.5 \text{ ns}$

* $3p^53d$

threshold energy of 13.85 eV

 $\tau \approx 50 \text{ ns}$

- higher levels
 - less frequently excited in avalanches
 - $\tau \Rightarrow 100 300 \text{ ns}$

Photo-absorption cross sections (σ_{pa})

♦ Large σ_{pa} for Ar below the ionisation,
 ♦ Increase on σ_{pa} for bigger molecules,
 ♦ σ_{pa}: C₂H₂ < CH₄ < C₂H₆ < C₃H₈ < nC₄H₁₀ < iC₄H₁₀

Plots: Ö. Şahin, İ. Tapan, E. N. Özmutlu and R. Veenhof, Penning transfer in argon-based gas mixtures, 2010 JINST 5 P05002.

Calculation method

$$G = G' / (1 + \beta G')$$

- * β fit parameter,
- found by choosing a linear region,
- \bullet G`experimental gain curves,

Exp. data: I.K. Broni'c and B. Grosswendt., Comparative study of gas ampli®cation and energy resolution in some argon-based mixtures, Nucl. Instrum. Meth. B 168 (2000) 437. 9th RD51 Collaboration Meeting, 20-22 February 2012, CERN

Ar + C₃H₈ mixtures (tube)

• Fitted by β/f_q f_q : concentration of the quencher

♦ $r_c = 2.5 \text{ cm}, r_a = 15 \text{ } \mu\text{m}$

Exp. data: I.K. Broni'c and B. Grosswendt., Comparative study of gas ampli®cation and energy resolution in some argon-based mixtures, Nucl. Instrum. Meth. B 168 (2000) 437. 9th RD51 Collaboration Meeting, 20-22 February 2012, CERN

Ar + DME & Ar + iC₄H₁₀ mixtures (tube)

Exp. data: I.K. Broni'c and B. Grosswendt., *Gas amplification and ionization coefficients in isobutane and argon-isobutane mixtures at low gas pressures*, *Nucl. Instrum. Meth.* **B 142** (1998) 219.

I.K. Broni'c and B. Grosswendt., *Comparative study of gas ampli*®*cation and energy resolution in some argon-based mixtures, Nucl. Instrum. Meth.* **B 168** (2000) 437.

Pressure dependence (tube)

- * Fitted by β/p_{gas}
- big error bars at low pressures
- $\, \bigstar \ \, \beta_{iC4H10} \! < \beta_{C3H8} \! < \beta_{DME}$
- ♦ largest σ_{pa} for iC_4H_{10} !
- * σ_{DME} will be checked !

⁹th RD51 Collaboration Meeting, 20-22 February 2012, CERN

Ar + quenchers & r_a dependence (tube)

• $\sigma_{pa}: C_2H_2 < CH_4 < C_3H_8; CF_4$ has comparable σ_{pa} with C_2H_2 !

Exp. data: P.C. Agrawal et al., Study of argon-based Penning gas mixtures for use in proportional counters, Nucl. Instrum. Meth. A 277 (1989) 557.
P.C. Agrawal and B.D. Ramsey, Penning gas mixtures for improving the energy resolution of proportional counters, IEEE Trans. Nucl. Sci. 36 (1989) 866.
P.C. Agrawal and B.D. Ramsey, Use of propane as a quench gas in argon-filled proportional counters and comparison with other quench gases, Nucl. Instrum. Meth. A 273 (1988) 331.

M. Deptuch, T.Z. Kowalski, Gas multiplication process in mixtures based on Ar, CO2, CF4, Nucl. Instrum. Meth. A 572 (2007) 184.

Triple mixtures (Micromegas)

- $\label{eq:sigma_particle} \bullet \ \ \sigma_{pa} \colon C_2 H_2 < C H_4 < C_2 H_6 < C_3 H_8 < n C_4 H_{10} < i C_4 H_{10}$
- ***** smallest β in CO₂ !
 - abundant vibrational and rotational levels

Exp. data: D. Attie., *TPC review*, *Nucl. Instrum. Meth.* **A 598** (2009) 89. Private communication, 10 May 2010

Gain calculations in Micromegas

Recent measurements

New developments in Micromegas Microbulk detectors

F.J. Iguaz¹, S. Andriamonje², F. Belloni¹, E. Berthoumieux¹, M. Calviani², T. Dafni³, R. De Oliveira², E. Ferrer-Ribas¹, J. Galán¹, J.A. García³, I. Giomataris¹, C. Guerrero², F. Gunsing¹, D.C. Herrera³, I.G. Irastorza³, T. Papaevangelou¹, A. Rodríguez³andA. Tomás³

¹IRFU, Centre d'Études Nucléaires de Saclay (CEA-Saclay), Gif-sur-Yvette, France ²European Organization for Nuclear Research (2), Genève, Switzerland ³Laboratorio de Física Nuclear y Astropartículas, Universidad de Zaragoza, Spain

> October 13, 2011 http://arxiv.org/pdf/1110.2641.pdf

Characterization of microbulk detectors in argon- and neon-based mixtures

F.J. Iguaz¹, E. Ferrer-Ribas¹, A. Giganon¹, and I. Giomataris¹

¹IRFU, Centre d'Études Nucléaires de Saclay (CEA-Saclay), Gif-sur-Yvette, France

January 17, 2012

http://arxiv.org/abs/1201.3012v1

Exprimental data

Plots: Fig. 4 and Fig. 7,

F. J. Iguaz et al., Characterization of microbulk detectors in argon- and neon-based mixtures (2012). <u>http://arxiv.org/abs/1201.3012v1</u>

9th RD51 Collaboration Meeting, 20-22 February 2012, CERN

Experimental data

Plots: Fig. 10,

F. J. Iguaz et al., Characterization of microbulk detectors in argon- and neon-based mixtures (2012). <u>http://arxiv.org/abs/1201.3012v1</u>

* Also private communication with F. J. Iguaz for unpublished data, 12 Feb 2012

Measuring the transfer probabilities

Townsend coefficient adjustment

$$G = \exp(\alpha_{Penning} d) \qquad \alpha_{Penning} = \alpha \frac{\sum v_i^{\text{ion}} + \sum r_i v_i^{\text{exc}}}{\sum v_i^{\text{ion}}}$$

- $\clubsuit \ d \text{ gap distance}$
- * r_i transfer probabilities: assuming α proportional to the sum of v_{ion} ,
- * α , v_i : gas properties (pressure, temperature ...)
- ✤ calculated by Magboltz [S.F. Biagi, NIM A 421 (1999) 234–240.]

Gain calibration

- uncertainty on the absolute gain,
- work function,
- calibration of the equipment.

$G \coloneqq g G$

Photon feedback

- ✤ secondary avalanches,
- ✤ at high gain,
- ✤ almost uncorrelated, free parameter.

$$G \coloneqq G / (1 - \beta G)$$

Argon mixtures

- Visible feedbacks at low concentrations of iC_4H_{10}
- Higher gains in 50 μm MM

Argon mixtures

- Feedbacks at low concentrations of C_2H_6
- ♦ Lower achievable gains compared to $Ar-iC_4H_{10}$ mixtures

Neon mixtures

- ♦ Lowest state of Ne* 16.62 eV iC₄H₁₀ I_p: 10.67 eV
- * Little feedback! σ_{pa} of iC₄H₁₀ has a maximum around 16 eV
- Highest gains in Ne- iC_4H_{10} mixtures before spark

Neon mixtures

Gain $T_{\rm Ne} - C_2 H_6 (50 \,\mu{\rm m})$ 104 10^{3} 50 80 90 60 70 E [kV/cm]

✤ 5%, 10%, 15%, 25% C₂H₆

✤ 5%, 10%, 15%, 20%, 25% C₂H₆

- * More feedback! compared to Ne- iC_4H_{10} mixtures
 - ♦ σ_{pa} of C₂H₆ has a maximum around 15 eV

Transfer rates

- Decrease on transfer rates at high fraction of quenchers
- ♦ $r_p: C_2H_6 < iC_4H_{10}$; iC_4H_{10} bigger molecule than C_2H_6 (shorten collision time)
- Higher transfer transfer rates in 50 μm MM
 - Mean free path of excited atoms !?!

Transfer rates & free path of ionisations

- Highest transfer rate in Ne-iC₄H₁₀
- ♦ $r_p: Ar-C_2H_6 < Ar-iC_4H_{10} < Ne-iC_4H_{10}$
 - ✤ Life time of excited Ne* atoms !?!

- Large distances of electrons
 - ✤ Little avalanche sizes at low E

Decrease on gas gain

Production rates of excited states

The same transfer probability (r_p) for all of the fits

- ✤ Dominant excitations ④ 3p⁵4s and 3p⁵4p
 ✤ Similar shape of 4p and 3d levels
 - Sharper increase of 4s

✤ Least produce of the higher states

Summary

***** β calculations:

- * quencher fraction, $1/f_q$
- * gas pressure, $1/p_{gas}$
- \clubsuit radius of the anode , $1/r_a{}^2$

Next: quantitative analysis with a theoretical model !

Micromegas:

- decrease on transfer rates
- Iarge ionisation free paths
 - microscopic calculations needed
- Next: separation of transfer rates !

