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@ Magnetized Iron Neutrino Detectors
@ Totally Active Scintillating Detectors
© Neutrino Factory Near Detectors

° Summary
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Detector Requirements for a Neutrino Factory

@ A neutrino factory stores u™ and .
@ Extract decay products: v, 7, ve, and e.
@ Long baseline oscillations used to probe CP violation.

Oscillation Appearance Channel: vg(7e) — v,(7,)
@ Easily identified signal: wrong sign muon.
@ Background species are

Ve(l_/e)a
ﬁu(’/u)a
and neutral current events.

@ Need to differentiate p* from .
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MIND Design for Neutrino Factory

f

@ 100 kTon detector
@ 14 mx14 mx140 m.

@ X andY views from 2 cm thick lattice of
1 cmx 3.5 cm scintillator bars.

@ Bfield from 3 cm Fe plates, induced by
120 kA current carried by 7 cm diameter
SCTL
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MIND Simulation

Y-position(m)

@ Events simulated with GENIE.
@ Full geometry & B field in GEANT 4
@ Realistic field map generated by Bob

Wands at FNAL

» default positive focussing.

@ Dimensions of detector
easily altered for
optimization.
testing variations.
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MIND Event Reconstruction

50 7, CC events.

@ Simulated events digitized.

» Hits positions smeared and
energy deposition
attenuated.

» Edep clustered into
3.5 cmx3.5 cm units.
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@ Tracks identified by Kalman Z Position of Hitin Meters

Filter or Cellular automata. 0 v, CC events.
@ Kalman fitting used to
determine momentum and
charge.
@ Algorithms from RecPack.

» supported by
Cervera-Villanueva et al.
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@ Fitted hits in red others in black.
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Golden Channel Analysis for 10 GeV Stored p

@ Cuts designed to select muon
in CC event

» Select good quality tracks.
» Optimized to reject NC-like
events.

Still under development.

@ Trying to recover low neutrino
energy events.

@ Re-evaluating pattern
recognition and event
classification.

@ Investigating multi-variate
analysis for event selection.
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Preliminary: Detector behaviour
and CP Precison
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Golden Channel Analysis for 10 GeV Stored p

Preliminary: Detector behaviour
and CP Precison

@ Cuts designed to select muon

in CC event izz: SEP——
» Select good quality tracks. _ sof y
» Optimized to reject NC-like g oF
events. & o
. -100F
Still under development. 150l
[+ Trying to recover low neutrino 0.07"0.08 of&éﬁ)ti‘s'ir%‘zlémo.‘lz 0.13 014 015

energy events.

@ Re-evaluating pattern
recognition and event
classification.
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@ Investigating multi-variate
analysis for event selection.
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MIND Variant: vYSTORM Far Detector

Efficiency and Backgrounds
@ 1cm thick iron plates.
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TASD Concept

External Field: Magnetic cavern

V. VECTOR FIELDS

@ Detector composed entirely of
scintillator bars. @ Field induced by many turns of

SCTL around cavern walls.
@ Engineering is incomplete.

@ High granularity detector
@ Can identify electron and

muon tracks.

R. Bayes (University of Glasgow) MIND and TASD CERN May 2012 9/14



TASD Simulation and Reconstruction

NUANCE NuMu CC Event

@ Produced using MIND framework. - ]
» Upgraded with discrete scintillator bars e L
» Parametrized model of detector response o ]
@ Benchmarking done with single particles. e ]

19000 18500 18000 17500 17000 -16500  -L60
Z (mm)

Example: 10 muons in a TASD-like detector
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TASD Performance

Electron
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Reconstruction
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o Efficiency is
fraction of events
which are
reconstructed.

Charge ID
Efficiency is
fraction of
reconstructed
events with the
correct charge.
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Near Detectors for a Neutrino Factory

@ 1% precision v flux extrapolation
@ Charm production for non-standard interaction searches
@ Cross-sections and other measurements.

beam
Vertex
Detector
Detail: Vertex Detector )
e High Res Detector Mini-MIND B>1 T
Detail: Scintillating Fibre High Resolution Detector
i 2 near
| ; detectors at
ik Tm e neutrino
B factory (one
L per straight).
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Near Detector Flux Measurements

@ Simulation of SciFi detector done by Sofia group.
@ Flux determined from Neutrino-Electron scattering.

ES™ signal extraction

ES~ signal extraction
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Event Selection Overall Purity All Signal  Signal events
sample eff. eff. events events from fit
ES™ 70% 32% 61% 7355 4491 4479186
ES* 83% 37% 63% 16964 10607  10512+131
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Summary

@ Magnetized detectors are essential for the measurement of CP
violation at a neutrino factory.
@ MIND type NF far detector well developed.
» Engineering of the detector is advanced
» Simulation and reconstruction software well developed.
» Progress still to be made in reconstruction&analysis
@ Low mass — low energy TASD also considered.
» Magnetization extremely difficult.
» Reconstruction&analysis not so advanced as MIND.
@ Near detectors are essential for control of flux systematics

» Design and simulation of high resolution detectors (i.e. SciFi) are
advanced.

» Demonstrated to have 1% precision from electron scattering
measurements.
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