MIND and TASD Neutrino Factory Detectors Great and Small

R. Bayes¹, A. Bross³, A. Cervera-Villanueva² , M. Ellis^{4,5}, Tapasi Ghosh² A. Laing¹ , F.J.P. Soler¹ , and R. Wands³

¹University of Glasgow, ²IFIC and Universidad de Valencia, ³Fermilab, ⁴Brunel University, ⁵Westpac Institutional Bank, Australia, on behalf of the IDS-NF collaboration

European Strategy for Neutrino Oscillation Physics May 15, 2012

Neutrino Factory Near Detectors

Detector Requirements for a Neutrino Factory

- A neutrino factory stores μ^+ and μ^- .
- Extract decay products: ν_{μ} , $\bar{\nu}_{\mu}$, ν_{e} , and $\bar{\nu}_{e}$.
- Long baseline oscillations used to probe CP violation.

Oscillation Appearance Channel: $\nu_e(\bar{\nu}_e) \rightarrow \nu_\mu(\bar{\nu}_\mu)$

- Easily identified signal: wrong sign muon.
- Background species are
 - $\nu_e(\bar{\nu}_e),$
 - $\sim \bar{\nu}_{\mu}(\nu_{\mu}),$

and neutral current events.

• Need to differentiate μ^+ from μ^- .

MIND Design for Neutrino Factory

- 100 kTon detector
- 14 m×14 m×140 m.
- X and Y views from 2 cm thick lattice of 1 cm×3.5 cm scintillator bars.
- B
 field from 3 cm Fe plates, induced by 120 kA current carried by 7 cm diameter SCTL

MIND Simulation

- Events simulated with GENIE.
- Full geometry & B field in GEANT 4
- Realistic field map generated by Bob Wands at FNAL
 - default positive focussing.

- Dimensions of detector easily altered for
 - optimization.
 - testing variations.

R. Bayes (University of Glasgow)

MIND Event Reconstruction

- Simulated events digitized.
 - Hits positions smeared and energy deposition attenuated.
 - Edep clustered into 3.5 cm×3.5 cm units.
- Tracks identified by Kalman Filter or Cellular automata.
- Kalman fitting used to determine momentum and charge.
- Algorithms from RecPack.
 - supported by Cervera-Villanueva et al.

• 50 $\bar{\nu}_{\mu}$ CC events.

Golden Channel Analysis for 10 GeV Stored μ

- Cuts designed to select muon in CC event
 - Select good quality tracks.
 - Optimized to reject NC-like events.

Still under development.

- Trying to recover low neutrino energy events.
- Re-evaluating pattern recognition and event classification.
- Investigating multi-variate analysis for event selection.

Preliminary: Detector behaviour and CP Precison

Golden Channel Analysis for 10 GeV Stored μ

- Cuts designed to select muon in CC event
 - Select good quality tracks.
 - Optimized to reject NC-like events.

Still under development.

- Trying to recover low neutrino energy events.
- Re-evaluating pattern recognition and event classification.
- Investigating multi-variate analysis for event selection.

Preliminary: Detector behaviour and CP Precison

MIND Variant: ν STORM Far Detector

- Icm thick iron plates.
- 5 m dia. circular cross-section.
- 1 kTon mass \rightarrow 20 m length.
- Stored µ energy: 3.8 GeV.

Efficiency and Backgrounds

TASD Concept

- Detector composed entirely of scintillator bars.
- High granularity detector
- Can identify electron and muon tracks.

External Field: Magnetic cavern

- Field induced by many turns of SCTL around cavern walls.
- Engineering is incomplete.

< 6 k

TASD Simulation and Reconstruction

- Produced using MIND framework.
 - Upgraded with discrete scintillator bars
 - Parametrized model of detector response
- Benchmarking done with single particles.

Example: 10 muons in a TASD-like detector

TASD Performance

- Efficiency is fraction of events which are reconstructed.
- Charge ID Efficiency is fraction of reconstructed events with the correct charge.

R. Bayes (University of Glasgow)

Near Detectors for a Neutrino Factory

- 1% precision ν flux extrapolation
- Charm production for non-standard interaction searches
- Cross-sections and other measurements.

Near Detector Flux Measurements

- Simulation of SciFi detector done by Sofia group.
- Flux determined from Neutrino-Electron scattering.

Event	Selection	Overall	Purity	All	Signal	Signal events
sample	eff.	eff.		events	events	from fit
ES ⁻	70%	32%	61%	7355	4491	4479±86
ES^+	83%	37%	63%	16964	10607	10512 ± 131

R. Bayes (University of Glasgow)

Summary

- Magnetized detectors are essential for the measurement of CP violation at a neutrino factory.
- MIND type NF far detector well developed.
 - Engineering of the detector is advanced
 - Simulation and reconstruction software well developed.
 - Progress still to be made in reconstruction&analysis
- Low mass low energy TASD also considered.
 - Magnetization extremely difficult.
 - Reconstruction&analysis not so advanced as MIND.
- Near detectors are essential for control of flux systematics
 - Design and simulation of high resolution detectors (i.e. SciFi) are advanced.
 - Demonstrated to have 1% precision from electron scattering measurements.

3

イロト 不得 トイヨト イヨト