

EUROv Super Beam studies (WP2)

Marcos Dracos IPHC-IN2P3/CNRS, Strasbourg SEV(on behalf of EUROV WP2) ORK PROGRAMME

Super Beam: conventional MW power neutrino beam

15/05/2012

M. Dracos

15/05/2012

Present Laboratory

Future Laboratory _____ with Water Cerenkov Detectors

M. Dracos

detector

used to well study the

efficiencies of the other one

- · Beam simulation and optimization, physics sensitivities
- . Beam/target interface
- · Target and target station design
- · Horn design
- Target/horn integration
- . Cost
- . Safety

The WP2 team

- Cracow University of Technology
- . STFC RAL
- . IPHC Strasbourg
- . Irfu-SPP, CEA Saclay
- external partners

- E. Baussan, O. Besida, C. Bobeth, O. Caretta, P. Cupial, T. Davenne,
- C. Densham, M. Dracos, M. Fitton, G. Gaudiot, M. Kozien, B. Lepers,
- A. Longhin, P. Loveridge, F. Osswald, P. Poussot, M. Rooney,
- B. Skoczen, G. Vasseur, N. Vassilopoulos, A. Wroblewski, J. Wurtz, V. Zeter, M. Zito

Technological Challenge

- Can we conceive a neutrino beam based on a multi-MW proton beam ?
- Can we design a target for a multi-MW proton beam ?
- Can we do it with a reliable design without compromising the physics reach ?
- Target
 - huge energy deposition (300-1000 J/cm³/pulse)
 - Severe problems from: sudden heating, stress, activation
 - Solid versus liquid targets
 - · cooling
- Horn
 - · cooling
 - · vibrations
 - pulser (up to 350 kA, 50 Hz)
- Safety
- **Lifetime** (supposed to run for 10 years)

Evolution of the system

H⁻ linac 2 GeV, 4 MW

Accumulator

Target

Magnetic

How to mitigate the power effect

4 target/horn system (4x4 m²) with single decay tunnel (~25 m)

solid targets able to afford up to ~1.5 MW proton beam

 send 4 MW/system every 50/4 Hz
in case of failure of one horn/target, continue with the 3 remaining ones sharing the 4 MW power

more expensive but more reliable system

M. Dracos

Comparison Mercury/Carbon

neutrino production

graphite target must be longer (76 cm,2 interaction lengths)

- neutrino intensity is higher with graphite
- neutrino contamination is lower
- high energy tail for graphite is more important

15/05/2012

M. Dracos

The Bonus...

Released power:

- Hg: ~ 1 0.6 MW
- C:~0.8 0.1 MW
- lower for graphite !

neutron flux dramatically reduced wrt Hg! (~ x15)

From Liquid to Solid Targets

Free mercury jet

Packed bed canister in symmetrical transverse flow configuration, titanium alloy spheres

15/05/2012

Solid Target

Packed bed canister in symmetrical transverse flow configuration (titanium alloy spheres) 1111111111111111 Cold flow in Hot flow out

Helium Velocity Maximum flow velocity = 202m/s Maximum Mach Number < 0.2

Helium Gas Temperature Total helium mass flow = 93 gr/s Maximum Helium temperature = 584° C Helium average outlet Temperature = 109° C

First tests with beam in the new HiRadMat@SPS facility at **CERN** in 2014

13

0.060 (m

Nane 1 [K] STREES. power input = 45364.7 [W]

Temperature

M. Dracos

15/05/2012

M. Dracos

4-Horn system

supporting structure

Displacement studies

Radiation Studies

Graphite blocks, helium conduction across 2 mm gaps, T_{max} = 575 ° C, tensile stress < 1.56 MPa

H⁻ linac 2 GeV, 4 MW

Accumulator

Target

ring Magnetic horn capt

Safety and Activation studies

around the target station after 200 running days (1 year)

15/05/2012

M. Dracos

4-proton lines

	Energy	4-5 GeV	
	Beam Power	4 MW	
	Proton per pulse	1.1 x 10 ⁺¹⁴	
	Rep. rate	50 Hz	
	Pulse duration	3.2 µs	
	Beam shape	Gaussian	
	Emittances rms	3π mm mrad**	
0.00 500.00 1000.00 (cm) 250.00 750.00 T	Target length	78 cm	
Beam rigidity: 16.16 T.m (4 GeV) 17.85 T.m (4.5 GeV)	Target radius	1.5 cm	
	Beam shape	Gaussian	
	Rep. rate	12.5 Hz	
T4 T3	Pulse duration	3.2 µs	
	Sigma	4 mm	
Elian K Zmin=	ickers 0.00 m Zmax= 40.00 m Xmax= 40.0 cm Ymax= 40.0 cm Ap * 1.00) Fri Mar 09 10:59:03 2012	
D4 D3 y(cm) 32 Kicker	P 8 8 8 Dipole •	m	
K2 16		I	
K1	+ + + + + + + + + + + + + + + + + + + +	+++++	
	20	z (m)	
0.00 250.00 500.00 (cm) ¹⁶]	
$\begin{array}{c} P \\ 15/05/2012 \end{array} \qquad \qquad \begin{array}{c} 2^{27} \\ M \\ \end{array} \right] \begin{array}{c} 2^{27} \\ 3^{27} \\ \end{array}$	Configuration 3: K-D-Q-Q-Q-T		

Neutrino Spectra

Physics Performance

Physics Performance

Physics Performance

- SPL-1: CERN to Fréjus (130 km)
- SPL-2: CERN to Canfranc (650 km)
 - 1 Mton WC detector (440 kton fiducial), 5% syst.

15/05/2012

M. Dracos

arXiv:1110.4583

Mass Hierarchy

arXiv:hep-ph/0603172v3

For $sin^2 2\theta_{13} = 0.1$, it is quite likely that with ~Mt yr atm neutrino data from a WC detector we will determine the hierarchy (T. Schwetz)

	$\beta \mathrm{B}$	SPL	T2HK
Detector mass	440 kt	$440~{\rm kt}$	$440~{\rm kt}$
Baseline	$130 \mathrm{~km}$	$130 \mathrm{km}$	$295 \ \mathrm{km}$
Running time $(\nu + \bar{\nu})$	5 + 5 yr	2 + 8 yr	2 + 8 yr
Beam intensity	$5.8(2.2) \cdot 10^{18}$ He (Ne) dcys/yr	$4 \ \mathrm{MW}$	$4 \mathrm{MW}$
Systematics on signal	2%	2%	2%
Systematics on backgr.	2%	2%	2%

2σ sensitivity to normal hierarchy from LBL + ATM data

- solid line: LBL+atm.
- dashed line: LBL

HP-SPL Super Beam at CERN

After EUROv

- R&D is needed for:
 - target
 - horn
 - horn pulsing system
- When?
 - next relevant EU call (Horizon2020)?

Conclusions

- The SPL to Fréjus Super Beam project is under study in FP7 EUROnu WP2:
 - Conventional technology
 - Many synergies with other projects
 - Very competitive CP sensitivity
- Work in EUROv:
 - physics performance has been improved.
 - the proposed system is now feasible and reliable
- We have started freezing all elements of this facility.
- Cost estimation very soon.
- The physics potential of this project is very high (also for astrophysics) especially in case of SB/BB combination.
- R&D is needed.

End

HP-SPL for Neutrino Beams

H⁻ linac 2 GeV, 4 MW

Accumulator

Target

Magnetic

CDR for 2.2 and 3.5 GeV HP-SPL already published (CERN 2000-012, CERN 2006-006)

The MEMPHYS Project (within FP7 LAGUNA DS)

Mainly to study:

•Proton Decay (GUT)

• up to ~10³⁵ years lifetime

Neutrino properties and Astrophysics

- Supernovae (burst + "relics")
- Solar neutrinos
- Atmospheric neutrinos
- Geoneutrinos
- neutrinos from accelerators (Super Beam, Beta Beam)

Water Cerenkov Detector with total fiducial mass: 440 kt: •3 Cylindrical modules 65x65 m •Readout: 3x81k 12" PMTs, 30% geom. cover. (#PEs =40% cov. with 20" PMTs).

(arXiv: hep-ex/0607026)

