MINOS/MINOS+ and NuMI

14/05/12

CERN neutrino strategy workshop Jenny Thomas, UCL

- MINOS+ goals
- NOVA goals
- Other NuMI plans
- Conclusion

<u>Preamble</u>

- NuMI stopped running to start upgrade on April 30th
 - Total of 1.43e21 P.O.T in physics runs to MINOS
- Beam will be upgraded to NOVA configuration and 700kW, 6e20/y
- Final MINOS (neutrino and anti-neutrino) results will be presented at Kyoto:
 - $-\theta_{13}$, Δm^2 , $\sin^2 2\theta_{23}$, steriles
- MINOS+ will search for any non-standard effects at high precision (10,000 events in 3 years near oscillation maximum)
 - Sterile neutrinos
 - Non Standard Interactions (dim 5 contact interactions)
 - Large extra dimensions (to about .5 micron)
- NOVA is the flagship experiment for mass hierarchy and CP violation
- Full exploitation of the NuMI facility could provide opportunities for augmentation of present suite of experiments
 - Large Liquid Argon detectors

The MINOS(+) Experiment

- Two detectors mitigate systematic effects
 - beam flux mis-modeling
 - Neutrino x-sec uncertainties
- L/E ~150-250 km/GeV
- Magnetized:
 - muon energy from range/curvature
 - distinguish μ+ from μ-

- Tracking sampling calorimeters
 - steel absorber 2.54 cm thick (1.4 X₀)
 - scintillator strips 4.1 cm wide (1.1 Moliere radii)
 - 1 GeV muons penetrate 28 layers
- Functionally equivalent
 - same segmentation
 - same materials
 - same mean B field (1.3 T)

MINOS Final Results

- Final MINOS results will be presented at Kyoto on
 - $-\theta_{13}, \theta_{13}, \Delta m^2, \Delta m^2, \sin^2 2\theta_{23}, \text{ combined fit, and } \nu_{\mu} \rightarrow \nu_{s}$
 - +30% for Δm_2 , +40% for θ_{13}
- Total exposure is
 - 10.7x10²⁰ p.o.t in FHC (neutrino mode)
 - 3.3x10²⁰ p.o.t in RHC (anti-neutrino mode)
- Original proposal was for 1.6x10²¹ p.o.t. This has been achieved (when special runs are included)

MINOS+ Starts April 2013 for three years

April 2013-2016

MINOS+ goals

- The overarching reason to run MINOS in the NuMI-NOVA beam is to look for new physics in a previously unexplored region
- Unique high statistics experiment with charge sign measurement
 - different energy region
 - different systematics (beam, x-sec comp)
- 3000 events/year between 4-10 GeV near oscillation maximum

MINOS+ goals

- The overarching reason to run MINOS in the NuMI-NO ν A beam is to look for new physics in a previously unexplored region
- Unique high statistics experiment with charge sign measurement
 - different energy region
 - different systematics (beam, x-sec comp)
- 3000 events/year between 4-10 GeV near oscillation maximum

MINOS+ Goals

Dimension 5 non-standard contact interactions show up in the region of study

J. Kopp, P.A.N. Machado and S.Parke, Phys.Rev.D82:113002 (2010).

Half micron sized extra dimensions can be observed!!

P.A.N.Machado, H.Nunokawa, R.Zukanovich Funchal, hep-ph/1101.003v1

Alexander Friedland, Cecilia Lunardini, Phys.Rev.D74:033012,2006.

MINOS+ Goals

- Verification of $P(\nu_{\mu} \rightarrow \nu_{\mu}) = 1 P(\nu_{\mu} \rightarrow \nu_{\tau}) + P(\nu_{\mu} \rightarrow \nu_{e})$
- Quantitative evidence for tau production hoped for
 - MINOS has observed certain topologies
 - 80 tau events per year expected in MINOS+

MINOS+ Goals

Search for Sterile Neutrinos: a couple of examples

 Δm^2_{43} factor averages to 0.5 at 1eV²

Atmospheric and sterile dips apparent at Δm^2_{43} = $2x10^{-2}eV^2$

MINOS+

- Total 3.4 e20 P.O.T to be analyzed on top of existing 7.2e20 P.O.T. result from 2010 (almost 50% more data) for Kyoto
- Odd dip will likely have to wait for MINOS+

$sin^2\theta_{24}$ is $sin2\theta_{\mu4}$

Near Detector at 1km allows short baseline and long baseline measurements

Anti-neutrino improvement is substantial over previous experiments (Bugey)

$\text{sin}^2\theta_{24} \ \text{is} \ \text{sin} 2\theta_{\mu 4}$

Near Detector at 1km allows short baseline and long baseline measurements

At very high $\Delta m^2_{\mu 4}$, ND has fast oscillation and reach is limited

 $sin^2\theta_{24}$ is $sin2\theta_{\mu4}$

Near Detector at 1km allows short baseline and long baseline measurements

At very high $\Delta m^2_{\mu 4}$, ND has fast oscillation and reach is limited

At lower $\Delta m^2_{\mu 4}$ structure is visible in ND spectrum

 $|U_{e4}|^2 = \sin^2\theta_{14}$ $|U_{\mu 4}|^2 = \cos^2\theta_{24} * \sin^2\theta_{24}$

(http://lanl.arxiv.org/abs/1109.4033)

 $\sin^2(2\theta_{\mu e}) = 4|U_{e4}|^2 * |U_{\mu 4}|^2$

Smirnov, NuFact 2011

 $|U_{e4}|^2 = \sin^2\theta_{14}$ $|U_{\mu 4}|^2 = \cos^2\theta_{24} * \sin^2\theta_{24}$ (http://lanl

(http://lanl.arxiv.org/abs/1109.4033)

NOVA

The NOvA Experiment

Physics Goals:

Measure the oscillation probabilities of

$$\mathbf{v}_{\mu}
ightarrow \mathbf{v}_{\mathsf{e}} \ \mathsf{and} \ \mathbf{v}_{\mu} \stackrel{-}{
ightarrow} \mathbf{v}_{\mathsf{e}}$$

- \square Measure the mixing angle θ_{13}
- Determine neutrino mass hierarchy
- Study the phase parameter for CP Violation δ_{CP}
- Precision measurements of Δm_{32}^2 , θ_{23}
- As well as:
 - v cross sections
 - Sterile neutrinos
 - Supernova signals

The NOvA Detectors

Construction Schedule

NOVA Future reach

- For the 'standard' neutrino parameters, NOVA is planning to tie down $\sin^2\!2\theta_{23}$ to +/- 2-3%
- Major goal is dCP and mass hierarchy

NOVA Future reach

- For the 'standard' neutrino parameters, NOVA is planning to tie down $\sin^2\!2\theta_{23}$ to +/- 2-3%
- Major goal is dCP and mass hierarchy

1 and 2 σ Contours for Starred Point

NOvA's Mass Ordering Resolution

- 3+3 years example counting experiment, 10% background systematic error
- > Full energy fit actively being pursued : longer running now envisaged!

NOvA hierarchy resolution, 3+3 yr $(v+\overline{v})$ $\sin^2(2\theta_{13})=0.095$, $\sin^2(2\theta_{23})=1.00$

NOvA and Non-maximal $sin^2(2\theta_{23})$

- 3 Years each neutrino and anti-neutrino
 - \rightarrow information on $\sin^2(2\theta_{23})$ is available.

1 and 2 of Contours for Starred Point

Contours 3 yr ν and 3 yr $\bar{\nu}$ ΝΟνΑ $|\Delta m_{22}| = 2.32 \cdot 10^{-3} \text{ eV}^2$ 0.08 $sln^{2}(2\theta_{13}) = 0.095$ $\sin^2(2\theta_{23}^{13}) = 0.97$ 0.07 0.06 0.05 0.04 0.03 $\Delta m^2 > 0$ 0.02 $\circ \delta = 0$ • $\delta = \pi/2$ \square $\delta = \pi$ 0.01 $\delta = 3\pi/2$

0.04

0.02

0.06

1 and 2 σ Contours for Starred Point

0.08

 $P(v_{\rho})$

0

NuMI Plans

- The NuMI beam will deliver 700kW proton beam over the next decade (6x10²⁰p.o.t/y)
- NOVA and MINOS+ (presently) will profit from this

NuMI Plans

- Exploitation of the NuMI beam is very high priority for FNAL
- FNAL considering possible experiments :
 - Off-axis at Ash River
 - On-axis on surface at Soudan or beyond
 - 20mr off axis, 1100km Canada
 - On-axis underground at Soudan Laboratory

- Letter of Intent for 5kt LAr detector has been submitted to FNAL Director/PAC
- Off-axis, surface detector, in remaining space at Ash River lab
- 5kt of LAr is equivalent to 15kt of NOvA
- Aids NOVA baseline reach in short/medium term (taking data before 2018) towards plan A or B.

GLADE+NOVA+T2K

5kt of Liquid Argon is equivalent to NOVA

Period	Integ. No. of Proton on Target	Beam Power (kW)	
-Jun.2012	3.1E+20	170	
-Jun.2013	7.8E+20	200	
-Jun.2014	1.2E+21	250 >	*2
-Jun.2015	1.8E+21	250	
-Jun.2016	2.5E+21	300	
-Jun.2017	3.2E+21	300	
-Jun.2018	3.9E+21	300	
-Jun.2019	5.5E+21	700 ×	*1
-Jun.2020	7.1E+21	700	
-Jun.2021	8.8E+21	700	

^{*2} LINAC upgrade completed

From JPARC/KEK management

^{*} Beam Energy 30GeV

LAr on-axis in NuMI

 $P(\bar{v}_e)$ vs. $P(v_e)$ in 4 Energy Bins

- ON-axis, LE WBB beam has spectral information
- Bi-probability plots are symmetric about the diagonal
- Invariance of oscillations to the exchange of $v \leftrightarrow \overline{v}$.

$$\Delta m^2 \Leftrightarrow -\Delta m^2$$
, and $\delta \Leftrightarrow \delta + \pi$

LBNE Reconfiguration
Workshop
April 2012

31

$\underline{\text{Error on }\delta_{\text{CP}}} \text{ (knowing MH)}$

- Both Ash River and Soudan Lar detectors (together with NOVA) give similar resolution on δ_{CP}
- 5+5 years with NuMl LE beam + NOVA (3+3) (by 2023?)
 - Obviously depends on when new detector gets started

summary

- NuMI beam will be upgraded this year to deliver 700kW (6e20pot/y) for NOVA in the ME configuration
- MINOS+ will pick up where MINOS leaves off
 - Large reach in sterile search
 - A wealth of non-standard effects could be seen with MINOS+
- NOVA will start construction shortly and will start taking data with 5kt in summer 2013
- Large Liquid Argon detector(s) on NuMI beamline are being actively considered by FNAL for short/medium term results
- It seems likely that the mass hierarchy should be known to at least 90% C.L. within the next decade (Atmospheric, T2K, NOVA, Other NuMI?, Reactor LBL)
- Longer term efforts must focus on CP violation capability
- The NuMI beam will continue to contribute to front line knowledge for the forseeable future

Backup information

Exploiting NuMI

- There are two completely different strategies for any experiment on the NuMI beamline to resolve the mass ordering:
 - Plan A: compare neutrinos and anti-neutrinos within the same experiment
 - No NuMI experiment can guarantee that Plan A will work.
 - Plan B: compare neutrino running with an experiment on another baseline (T2K for example). Must correct for kinematic phase first
- NOVA (and another experment on the NuMI beamline) and T2K will measure the identical oscillation probabilities, except for the matter effect, which determines the mass ordering.
 - If the oscillation probability is higher in NOvA, it is the normal mass ordering.

35