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Evidence for sterile neutrinos from 
precision cosmology?



  

Precision cosmological probes...

Probes of inhomogeneities

CMB 
temperature
& polarisation
anisotropies

Large-scale
matter 
distribution

Distance vs redshift

Type 1a
supernovae

Local Hubble expansion rate

Baryon Acoustic 
Oscillation scale

H 0=100 h km /s /Mpc
=73.8±2.4 km /s /Mpc



  

The concordance flat ΛCDM model...

13.4 billion years ago
(at photon decoupling)

Composition today

● The simplest model consistent with present observations.

Massless
Neutrinos
(3 families)

Plus flat spatial geometry+initial conditions 
from single-field inflation

ν-to-γ energy density 
ratio fixed by SM physicsCosmological 

constant

Fixed by CMB 
temperature
measurements



  

● Neutrino decoupling at T ~ O(1) MeV.

● After e+e- annihilation (T ~ 0.2 MeV):

– Temperature:

– Number density per flavour:

– Energy density per flavour:

● If massive, then at T << m:

Neutrino energy density (standard picture)...

T ν=( 4
11 )

1 /3

T γ

nν=
6
4
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π2 T ν
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nγ

ρν=
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ργ

Photon 
temperature,
number density, &
energy density

ρν=mνnν Ων ,0h
2= mν

94 eV
Hot dark matter (not within vanilla ΛCDM)

3ρν
ργ ∼0.68

Fixed by weak interactions

Assuming instantaneous 
decoupling



  

Extending the “neutrino” sector...

∑i
ρν , i+ρX=N eff (78 π

2

15
T ν

4)
=(3.046+Δ N eff)ρν

(0)

● Any particle species whose production is associated with some thermal 
process and that decoupled while relativistic at relatively late times [T< 
O(100) MeV] will behave (more or less) like a neutrino as far as 
cosmological observations are concerned. 

Neutrino 
temperature
per definition

Corrections due to 
non-instantaneous decoupling,
finite temperature effects, and
flavour oscillations

Three SM neutrinos

Other light stuff:
sterile neutrinos,
hidden photons, 
etc.



  

Plan...

● Evidence of N
eff

>3 from CMB and large-scale structure observations.

● Connection to the short baseline sterile neutrino.

● Bonus slides: Big bang nucleosythesis



  

1. CMB+large-scale structure...



  

● Recent CMB+LSS data appear to prefer N
eff

 > 3!

Dunkley et al. [Atacama Cosmology Telescope] 2010 Keisler et al. [South Pole Telescope] 2011

WMAP+ACT

WMAP+ACT+H
0
+BAO

WMAP
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Evidence for N
eff 

> 3 from CMB+LSS...



  

● N
eff

>3 trend has been 
there since WMAP-5.

● Exact numbers depend 
on the cosmological 
model, and the 
combination of data.

● Many model+data 
combinations find N

eff
>3 

at 95% – 99% C.L.

● Central value N
eff

 ~ 4.

W-5=WMAP-5; W-7=WMAP-7

     = 
>95% C.L.

Abazajian et al., “Light sterile neutrinos: a white paper”, 2012



  

● One exception: cluster 
abundance from ROSAT 
All-sky Survey/Chandra 
X-ray observatory 
prefers a more 
“standard” value of N

eff
.

W-5=WMAP-5; W-7=WMAP-7

Abazajian et al., “Light sterile neutrinos: a white paper”, 2012

N eff<3.74 (95C.L.)

WMAP-7+Clusters+SPT+BA0+H
0

(N
eff 

restricted to ≥ 3)

Burenin & Vikhlinin 2012

     = uses 
cluster data



  

● N
eff

 looks easy to detect..  

● But we also use the same 
data to measure at least 6 
other cosmological 
parameters:

● Plenty of parameter 
degeneracies! 

How does it work...

(ωb ,ωm , h , As , ns ,τ)

Figure courtesy of J. Hamann

baryon density

matter density

Hubble parameter

primordial fluctuation 
amplitude & spectral index 

optical depth
to reionisation



  

What the CMB really probes: equality redshift...
Exact degeneracy between the 
physical matter density ω

m
 and N

eff
.

1+zeq=
ωm
ωr≃

ωm
ωγ

1
1+0.2271N eff

● Ratio of 3rd and 1st peaks sensitive to 
the redshift of matter-radiation 
equality via the early ISW effect. 

Fixed: z
eq

Figure courtesy of J. Hamann



  

What the CMB really probes: sound horizon...

● Peak positions depend on:

Fixed: z
eq

Figure courtesy of J. Hamann

Fixed: z
eq

, ω
b
, θ

s

θs=
rs
D A

Sound horizon
at decoupling

Angular distance to the
last scattering surface

θs∝
(ωm h

−2)−1/ 2

∫
a *

1
da

√ωm h−2a−3+(1−ωmh
−2)Fixed 

z
eq

, ω
b
 

Exact degeneracy between ω
m
 

and the Hubble parameter h.

Flat ΛCDM



  

What the CMB really probes: anisotropic stress...

● Apparent (i.e., not physical) partial 
degeneracies with primordial 
fluctuation amplitude A

s
 and 

spectral index n
s
.

Figure courtesy of J. Hamann

Fixed: z
eq

, ω
b
, θ

s
Fixed: z

eq
, ω

b
, θ

s
, A

s
(l=200) 

● However, free-streaming particles 
have anisotropic stress.

● First real signature of N
eff

 in the 
3rd peak!



  

Komatsu et al. [WMAP5] 2008

● Measurement of the third peak (since WMAP-5) gives lower limit on N
eff

 
from WMAP alone (without supplementary large-scale structure data).

● Upper limit requires combination of WMAP with other observations to 
break the remaining N

eff
–ω

m
–h parameter degeneracies.

– Pinning down either ω
m
 or h will do! 

from local (z<0.1) expansion rate measurements



  

Large-scale matter power spectrum 
(probes baryon fraction)

Breaking the remaining parameter degeneracies...

Data from SDSS DR7

Fixed by WMAP: z
eq

, ω
b
, ω

m
h-2 

N eff=1,3,5,10
f b≡

ωb
ωm

ω
b
 fixed by CMB



  

Large-scale matter power spectrum 
(probes baryon fraction)

Breaking the remaining parameter degeneracies...

Data from SDSS DR7

Fixed by WMAP: z
eq

, ω
b
, ω

m
h-2 

N eff=1,3,5,10
f b≡

ωb
ωm

ω
b
 fixed by CMB

Hou et al. 2011

Fixed by WMAP: 
z

eq
, ω

b
, θ

s
, A

s
(l=200) θd

θs
=
rd
rs
∝ωm

1/ 4

CMB damping tail                
(probes photon diffusion scale)

ACT since 2010
SPT since 2011

Fixed by WMAP



  

2. Connection to the 
short baseline sterile neutrino...



  

● Best-fits parameters: e.g., Kopp, Maltoni & Schwetz 2011; Giunti & Laveder 2011

Experimental anomalies & the sterile ν interpretation... 

Reactor experiments only Global short baseline
(including LSND+MiniBooNE)

“3+1” “3+2” “1+3+1”

ν
e
 ν

μ
 ν

τ

ν
s



  

Di Bari, Lipari & Lusignoli 2000

Δ N eff=0.1
0.3

0.5
0.7

0.9

νμ↔νs

ms<mμ
ms>mμ

Light sterile neutrinos and N
eff

...

● SBL-preferred Δm2 and mixing 
favour the production and 
thermalisation of sterile 
neutrinos in the early universe 
via ν

α
↔ν

s
 oscillations + ν

α
 

scattering.

→ Can easily produce an 
excess relativistic energy   
density of ΔN

eff 
~ 1.

→ Sterile states have the same 
temperature as the SM 
neutrinos. 



  

Light sterile neutrinos and N
eff

...

Hannestad, Tamborra & Tram 2012

ms>mα

ms<mα

● SBL-preferred Δm2 and mixing 
favour the production and 
thermalisation of sterile 
neutrinos in the early universe 
via ν

α
↔ν

s
 oscillations + ν

α
 

scattering.

→ Can easily produce an 
excess relativistic energy   
density of ΔN

eff 
~ 1.

→ Sterile states have the same 
temperature as the SM 
neutrinos. 



  

● 3+1 thermalised sterile:

● 3+2 thermalised sterile:

Hamann, Hannestad, Raffelt, Tamborra & Y3W  2010

CMB+SDSS7+HST

68%

95%

99%

Number of sterile neutrinos

M
as

s 
of

 e
ac

h 
st

er
ile

 n
eu

tr
in

o 
[e

V
]

ms0.48 eV 95%C.I.

ms1ms20.9 eV 95%C.I.

ms~1 eV

ms1∼0.7 eV , ms2∼0.9 eVLab best-fit:

Lab best-fit:

Can the short baseline sterile neutrino explain N
eff 

> 3?

● Short answer: Not so easy.

● Reason: eV mass neutrinos violate CMB+LSS hot dark matter bounds.

ΛCDM+N
eff

+m
s



  

● Suppress sterile neutrino 
thermalisation using, e.g., a large 
lepton asymmetry (L >> B ~ 10-10).

– Generating a large lepton 
asymmetry requires new 
physics.

– If complete suppression, then 
N

eff
 > 3 must be explained 

by some other physics (sub-
eV thermal axions, hidden 
photons, etc.?)

Is there a way out?  Plan A...

Hannestad, Tamborra & Tram 2012

ms>mα

ms<mα

L=10−2

L=10−2

Foot & Volkas 1995
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[astro-ph.CO]; Chen and Lin, Cosmon as the Modulon: Non-Gaussianity from Dark Enegry, 
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– predictions for Neff[CMB] and Neff[BBN],  arXiv:1111.6366 [astro-ph.CO]; Jeong and Takahashi, 
Light Higgsino from Axion Dark Radiation, arXiv:1201.4816 [hep-ph]; Kaplan, Krnjaic, Rehermann, 
and Wells, Dark Atoms: Asymmetry and Direct Detection, arXiv:1105.2073 [hep-ph]; Cicoli, Large 
extra dimensions and light hidden photons from anisotropic string vacua,  arXiv:1111.0790 [hep-th];



  

● Failing to suppress ν
s
 thermalisation, exploit parameter degeneracies in 

the CMB+LSS to engineer a good fit.

● No room for play within the ΛCDM model, but extensions of ΛCDM can 
help to relax the hot dark matter constraint on m

s
:

– Non-standard dark energy equation of state.

– Modified gravity.

– Non-flat spatial geometry.

– Even more massless degrees of freedom.

– …

Is there a way out?  Plan B...

Elgarøy & Kristiansen 2011; Hamann, Hannestad, Raffelt & Y3W  2011
Giusarma et al. 2012; Motohashi, Starobinsky & Yokoyama 2012



  

● Failing to suppress ν
s
 thermalisation, exploit parameter degeneracies in 

the CMB+LSS to engineer a good fit.

● No room for play within the ΛCDM model, but extensions of ΛCDM can 
help to relax the hot dark matter constraint on m

s
:

– Non-standard dark energy equation of state.

– Modified gravity.

– Non-flat spatial geometry.

– Even more massless degrees of freedom.

– …

Is there a way out?  Plan B...

Elgarøy & Kristiansen 2011; Hamann, Hannestad, Raffelt & Y3W  2011
Giusarma et al. 2012; Motohashi, Starobinsky & Yokoyama 2012

1 x 1 eV sterile neutrino
can be reasonably
accommodated.

1 x 2eV or 2 x 1 eV is 
still problematic...



  

● An example: accommodating 1eV sterile neutrinos with f(R) gravity:

Is there a way out?  Plan B...

Motohashi, Starobinsky & Yokoyama 2012

S
te

ril
e 

ne
ut

rin
o 

m
as

s 
[e

V
]

Physical dark natter density ω
dm

ΛCDM+1ν
s

f(R)+1ν
s

Modified gravity scenario to
explain accelerated expansion
in lieu of dark energy



  

● Exploiting parameter degeneracies also implies that other (unrelated) 
cosmological parameter values will change.

Necessary side effects...

Hamann, Hannestad, Raffelt & Y3W  2011

Sterile neutrino mass
= 0 eV

1 eV 2 eV

95%
68%

Cold dark matter density

Dark energy 
equation of state
parameter



  

Planck and N
eff

...

Bashinsky & Seljak 2004
Helium fraction
as a free parameter

68% sensitivities

● If N
eff

 is as large as 4, it will be settled almost immediately by Planck 
(launched May 14, 2009; public data release early 2013).



  

Planck and neutrino mass...

Planck alone (1 year)      2013
(+ current LSS probes → not much
 improvement)

Planck+Euclid weak lensing     2020+

Band = model complexity

Perotto et al. 2006

Hannestad, Tu & Y3W 2006

Current constraints

Not quite good enough to 
rule in or rule out 1 eV 
sterile neutrinos 
definitively...

95% constraints/sensitivities



  

● Current precision cosmological data show a preference for extra 
relativistic degrees of freedom (beyond 3 neutrinos).

● Sterile neutrino interpretation of short baseline neutrino anomalies does 
not quite fit into the simplest picture though...

– 3+2: Too many for BBN 

– 3+1, 3+2: Too heavy for CMB/LSS

● Non-trivial extensions to ΛCDM can reasonably accommodate 1 x 1 eV 
fully thermalised sterile neutrino species.

● Planck with tell (at least part of the story).

Summary...



  

3. Extra slides: BBN



  

● Light element abundances are sensitive to excess relativistic energy 
density.

Hamann, Hannestad, Raffelt & Y3W 2011

Evidence for N
eff 

> 3 from BBN...

Baryon 
density

Effective number of
sterile neutrinos

Using CMB prior on ω
b

N eff=3.046+N s

Deuterium

Helium-4

Pettini et al. 2008

log [D /H ]p=−4.55±0.03

Y p=0.2573−0.0088
+0.0033

Aver, Olive & 
Skillman 201199%

90%

τn=878.5s
τn=885.7s



  

● Mild preference for N
eff

 > 3 (or N
s
 > 0) from Deuterium+Helium-4.

● But N
s
 = 2 is strongly disfavoured. 

Evidence for N
eff 

> 3 from BBN...

τn=878.5s
τn=885.7s

+ CMB prior on
baryon density

Hamann, Hannestad, Raffelt & Y3W 2011



  

● Introduce a neutrino chemical potential (= O(0.1) lepton asymmetry).

● Then even N
s
 = 3 is allowed by BBN.

Quick fix: degenerate BBN...

Hamann, Hannestad, Raffelt & Y3W 2011

Lepton asymmetry

Question: How to simultaneously
get L = O(0.1) and B = O(10-10)?

L≡
nνα−n ν̄α
nγ

= 1
12ζ(3) (T νT γ )

3

(π2ξ+ξ3)

Neutrino chemical potential

99%

90%
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