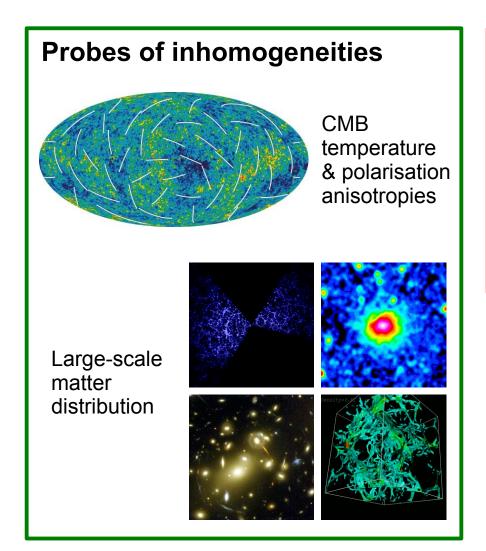
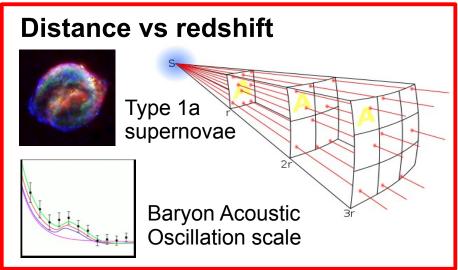
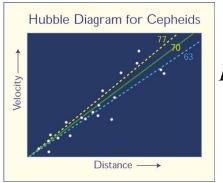
# Neutrino masses in the universe

Yvonne Y. Y. Wong RWTH Aachen


Neutrino town meeting, CERN May 14 – 16, 2012


# Evidence for sterile neutrinos from precision cosmology?

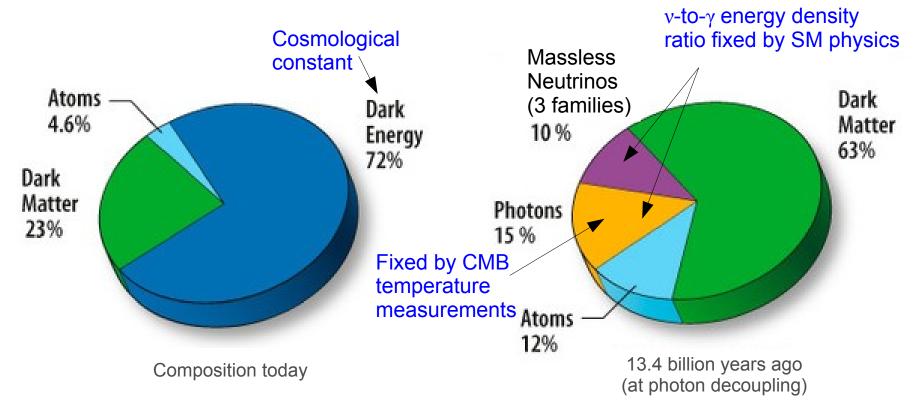
Yvonne Y. Y. Wong RWTH Aachen


Neutrino town meeting, CERN May 14 – 16, 2012

# Precision cosmological probes...






#### **Local Hubble expansion rate**



 $H_0 = 100 h \text{ km/s/Mpc}$ = 73.8 ± 2.4 km/s/Mpc

#### The concordance flat $\Lambda$ CDM model...

The simplest model consistent with present observations.

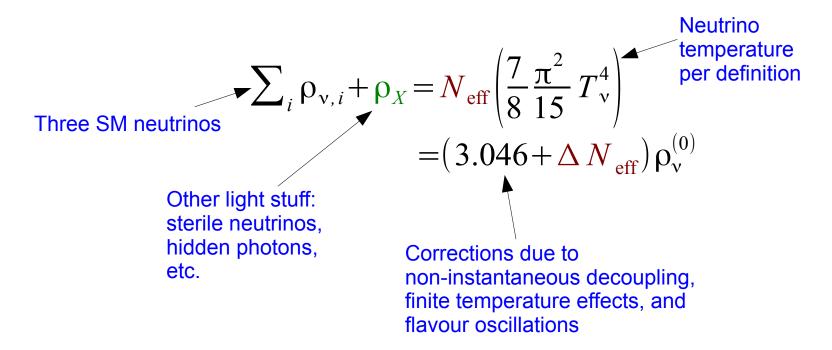


Plus flat spatial geometry+initial conditions from single-field inflation

## Neutrino energy density (standard picture)...

- Neutrino decoupling at T ~ O(1) MeV. ← Fixed by weak interactions
- After e<sup>+</sup>e<sup>-</sup> annihilation (T ~ 0.2 MeV):
  - Temperature:

$$T_{\nu} = \left(\frac{4}{11}\right)^{1/3} T_{\nu}$$
 Photon temperature, number density, &


decoupling

Assuming instantaneous

- Number density per flavour:  $n_{\rm v} = \frac{6}{4} \frac{\zeta(3)}{\pi^2} T_{\rm v}^3 = \frac{3}{11} n_{\rm v}^4$  number density energy density energy density energy density  $\rho_{\rm v} = \frac{7}{8} \frac{\pi^2}{15} T_{\rm v}^4 = \frac{7}{8} \left(\frac{4}{11}\right)^{4/3} \rho_{\rm v}^4$   $\frac{3\rho_{\rm v}}{\rho_{\rm v}} \sim 0.68$
- If massive, then at T << m:  $\rho_{\nu} = m_{\nu} n_{\nu}$   $\Omega_{\nu,0} h^2 = \frac{m_{\nu}}{94 \text{ eV}}$ Hot dark matter (not within vanilla  $\Lambda$ CDM)

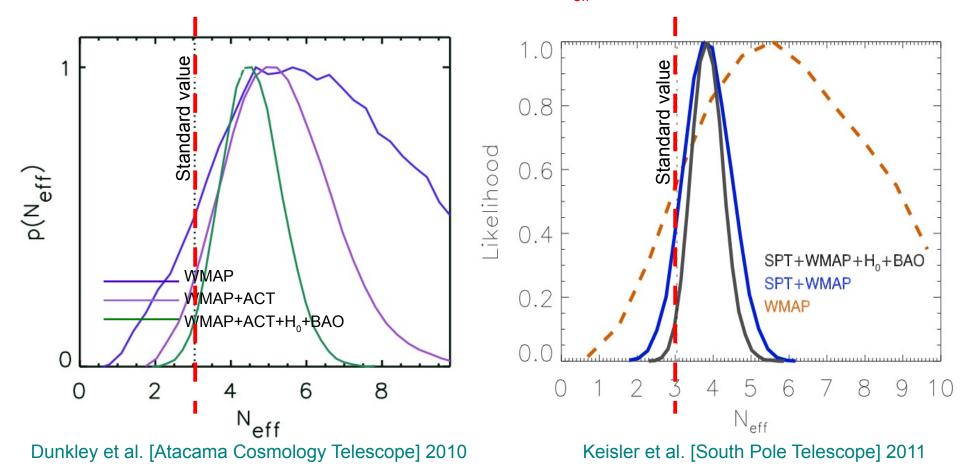
## Extending the "neutrino" sector...

 Any particle species whose production is associated with some thermal process and that decoupled while relativistic at relatively late times [T< O(100) MeV] will behave (more or less) like a neutrino as far as cosmological observations are concerned.



#### Plan...

Evidence of N<sub>eff</sub>>3 from CMB and large-scale structure observations.


Connection to the short baseline sterile neutrino.

Bonus slides: Big bang nucleosythesis

1. CMB+large-scale structure...

# Evidence for N<sub>eff</sub> > 3 from CMB+LSS...

Recent CMB+LSS data appear to prefer N<sub>eff</sub> > 3!



- N<sub>eff</sub>>3 trend has been there since WMAP-5.
- Exact numbers depend on the cosmological model, and the combination of data.
- Many model+data combinations find N<sub>eff</sub>>3 at 95% – 99% C.L.
- Central value N<sub>eff</sub> ~ 4.

| Model                                    | Data                                     | $N_{ m eff}$                         |
|------------------------------------------|------------------------------------------|--------------------------------------|
| $N_{ m eff}$                             | W-5+BAO+SN+ $H_0$                        | $4.13^{+0.87(+1.76)}_{-0.85(-1.63)}$ |
|                                          | W-5+LRG+ $H_0$                           | $4.16^{+0.76(+1.60)}_{-0.77(-1.43)}$ |
|                                          | W-5+CMB+BAO+XLF+ $f_{gas}+H_0$           | $3.4^{+0.6}_{-0.5}$                  |
|                                          | W-5+LRG+maxBCG+ $H_0$                    | $3.77^{+0.67(+1.37)}_{-0.67(-1.24)}$ |
|                                          | $W-7+BAO+H_0$                            | A 3A+0.86                            |
| =                                        | W-7+LRG+ $H_0$                           | $4.25^{+0.76}_{-0.80}$               |
| >95% C.L.                                | W-7+ACT                                  | $5.3 \pm 1.3$                        |
|                                          | $\longrightarrow$ W-7+ACT+BAO+ $H_0$     | $4.56 \pm 0.75$                      |
|                                          | W-7+SPT                                  | $3.85 \pm 0.62$                      |
|                                          | $\rightarrow$ W-7+SPT+BAO+ $H_0$         | $3.85 \pm 0.42$                      |
|                                          | $\rightarrow$ W-7+ACT+SPT+LRG+ $H_0$     | $4.08^{(+0.71)}_{(-0.68)}$           |
|                                          | $\rightarrow$ W-7+ACT+SPT+BAO+ $H_0$     | $3.89 \pm 0.41$                      |
|                                          | W-7+CL+SPT+BAO+ $H_0$                    | (< 3.74)                             |
| $N_{ m eff}{+}f_{ u}$                    | W-7+CMB+BAO+ $H_0$                       | $4.47^{(+1.82)}_{(-1.74)}$           |
|                                          | $\rightarrow$ W-7+CMB+LRG+ $H_0$         | $4.87^{(+1.86)}_{(-1.75)}$           |
| $N_{\mathrm{eff}} + \Omega_k$            | $W-7+BAO+H_0$                            | $4.61 \pm 0.96$                      |
|                                          | $\longrightarrow$ W-7+ACT+SPT+BAO+ $H_0$ | $4.03 \pm 0.45$                      |
| $N_{\mathrm{eff}} + \Omega_k + f_{ u}$   | $\rightarrow$ W-7+ACT+SPT+BAO+ $H_0$     | $4.00 \pm 0.43$                      |
| $N_{	ext{eff}}{+}f_{ u}{+}w$             | W-7+CMB+BAO+ $H_0$                       | $3.68^{(+1.90)}_{(-1.84)}$           |
|                                          | W-7+CMB+LRG+ $H_0$                       | $4.87^{(+2.02)}_{(-2.02)}$           |
| $N_{\mathrm{eff}} + \Omega_k + f_{ u} +$ | $-w$ W-7+CMB+BAO+SN+ $H_0$               | $4.2^{+1.10(+2.00)}_{-0.61(-1.14)}$  |
|                                          | $\longrightarrow$ W-7+CMB+LRG+SN+ $H_0$  | $4.3^{+1.40(+2.30)}_{-0.54(-1.09)}$  |

 One exception: cluster abundance from ROSAT All-sky Survey/Chandra X-ray observatory prefers a more "standard" value of N<sub>eff</sub>.

$$N_{\rm eff}$$
 < 3.74 (95 % C.L.)

WMAP-7+Clusters+SPT+BA0+ $H_0$ ( $N_{eff}$  restricted to  $\geq 3$ )

Burenin & Vikhlinin 2012

| Data                           | 3.7                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                | N <sub>eff</sub>                                                                                                                                                                                                                                                                                                                                                                                                                               |
| W-5+BAO+SN+ $H_0$              | $4.13^{+0.87(+1.76)}_{-0.85(-1.63)}$                                                                                                                                                                                                                                                                                                                                                                                                           |
| W-5+LRG+ $H_0$                 | $4.16^{+0.76(+1.60)}_{-0.77(-1.43)}$                                                                                                                                                                                                                                                                                                                                                                                                           |
| W-5+CMB+BAO+XLF+ $f_{gas}+H_0$ | $3.4^{+0.6}$                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| W-5+LRG+maxBCG+ $H_0$          | $3.77^{+0.67(+1.37)}_{-0.67(-1.24)}$                                                                                                                                                                                                                                                                                                                                                                                                           |
| W-7+BAO+ $H_0$                 | $4.34^{+0.86}_{-0.88}$                                                                                                                                                                                                                                                                                                                                                                                                                         |
| W-7+LRG+ $H_0$                 | $4.25^{+0.76}_{-0.80}$                                                                                                                                                                                                                                                                                                                                                                                                                         |
| W-7+ACT                        | $5.3 \pm 1.3$                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| W-7+ACT+BAO+ $H_0$             | $4.56 \pm 0.75$                                                                                                                                                                                                                                                                                                                                                                                                                                |
| W-7+SPT                        | $3.85 \pm 0.62$                                                                                                                                                                                                                                                                                                                                                                                                                                |
| W-7+SPT+BAO+ $H_0$             | $3.85 \pm 0.42$                                                                                                                                                                                                                                                                                                                                                                                                                                |
| W-7+ACT+SPT+LRG+ $H_0$         | $4.08^{(+0.71)}_{(-0.68)}$                                                                                                                                                                                                                                                                                                                                                                                                                     |
| W-7+ACT+SPT+BAO+ $H_0$         | $3.89 \pm 0.41$                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $W-7+CL+SPT+BAO+H_0$           | (< 3.74)                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| W-7+CMB+BAO+H <sub>0</sub>     | $4.47^{(+1.82)}_{(-1.74)}$                                                                                                                                                                                                                                                                                                                                                                                                                     |
| W-7+CMB+LRG+ $H_0$             | $4.87^{(+1.86)}_{(-1.75)}$                                                                                                                                                                                                                                                                                                                                                                                                                     |
| W-7+BAO+ $H_0$                 | $4.61 \pm 0.96$                                                                                                                                                                                                                                                                                                                                                                                                                                |
| W-7+ACT+SPT+BAO+ $H_0$         | $4.03 \pm 0.45$                                                                                                                                                                                                                                                                                                                                                                                                                                |
| W-7+ACT+SPT+BAO+ $H_0$         | $4.00 \pm 0.43$                                                                                                                                                                                                                                                                                                                                                                                                                                |
| W-7+CMB+BAO+ $H_0$             | $3.68^{(+1.90)}_{(-1.84)}$                                                                                                                                                                                                                                                                                                                                                                                                                     |
| W-7+CMB+LRG+ $H_0$             | $4.87^{(+2.02)}_{(-2.02)}$                                                                                                                                                                                                                                                                                                                                                                                                                     |
| W-7+CMB+BAO+SN+ $H_0$          | $4.2^{+1.10(+2.00)}_{-0.61(-1.14)}$                                                                                                                                                                                                                                                                                                                                                                                                            |
| W-7+CMB+LRG+SN+ $H_0$          | $4.3^{+1.40(+2.30)}_{-0.54(-1.09)}$                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                | W-5+CMB+BAO+XLF+ $f_{gas}$ + $H_0$<br>W-5+LRG+maxBCG+ $H_0$<br>W-7+BAO+ $H_0$<br>W-7+LRG+ $H_0$<br>W-7+ACT<br>W-7+ACT+BAO+ $H_0$<br>W-7+SPT<br>W-7+SPT+BAO+ $H_0$<br>W-7+ACT+SPT+LRG+ $H_0$<br>W-7+ACT+SPT+BAO+ $H_0$<br>W-7+CL+SPT+BAO+ $H_0$<br>W-7+CMB+BAO+ $H_0$<br>W-7+CMB+LRG+ $H_0$<br>W-7+ACT+SPT+BAO+ $H_0$<br>W-7+ACT+SPT+BAO+ $H_0$<br>W-7+ACT+SPT+BAO+ $H_0$<br>W-7+ACT+SPT+BAO+ $H_0$<br>W-7+CMB+BAO+ $H_0$<br>W-7+CMB+BAO+ $H_0$ |

Abazajian et al., "Light sterile neutrinos: a white paper", 2012

#### How does it work...

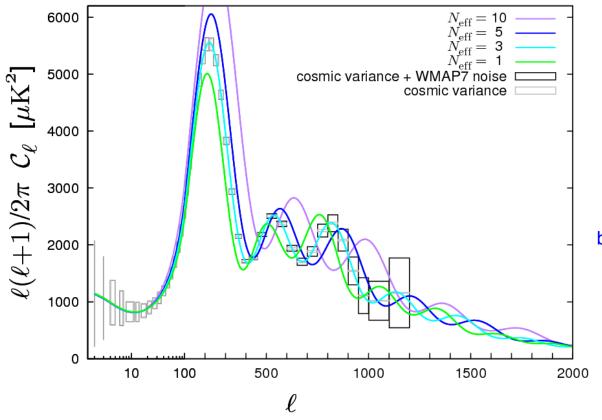
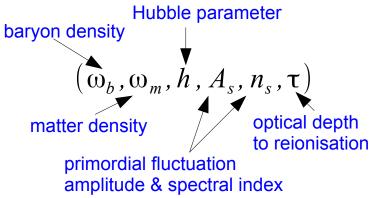
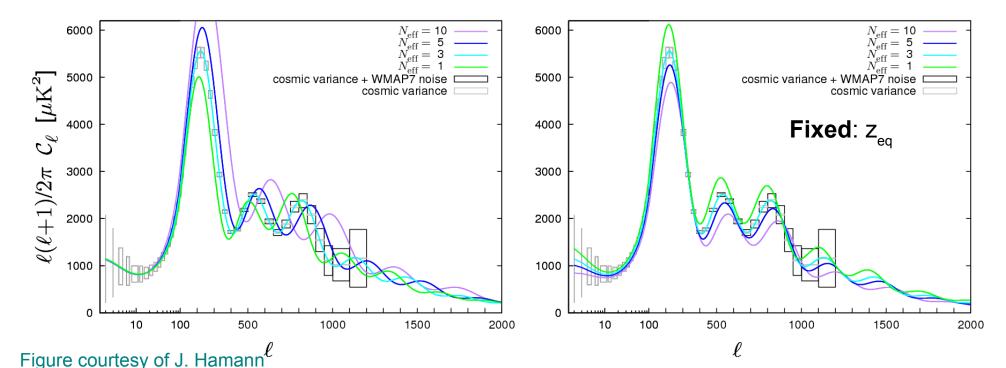
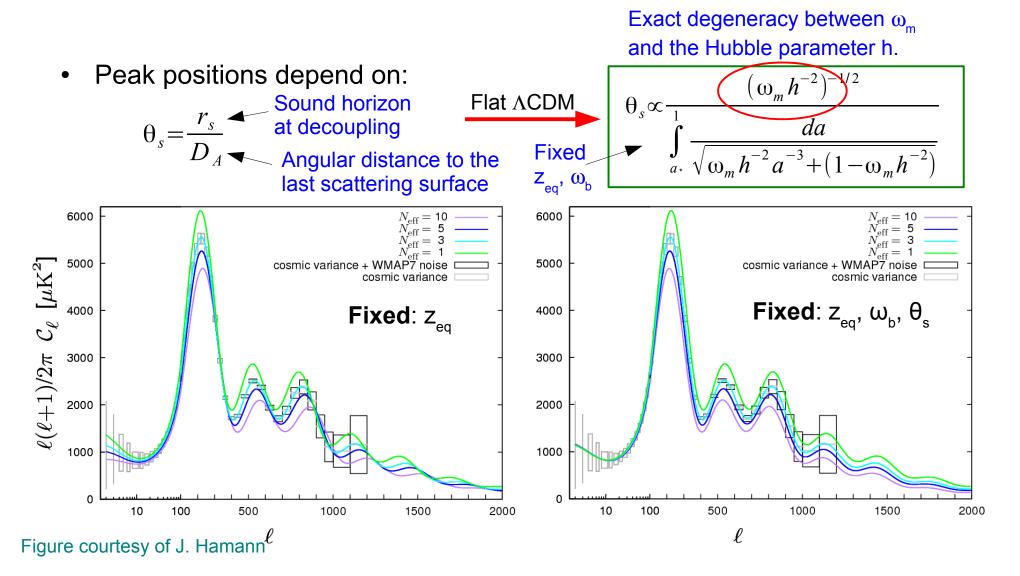




Figure courtesy of J. Hamann

- N<sub>eff</sub> looks easy to detect..
- But we also use the same data to measure at least 6 other cosmological parameters:

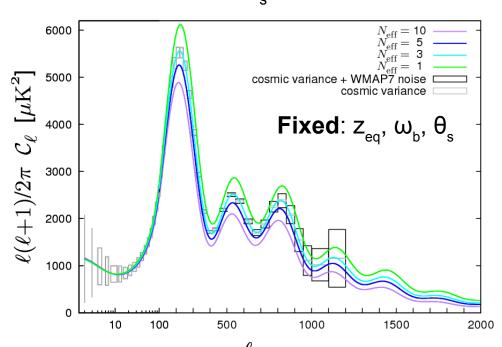



 Plenty of parameter degeneracies!


# What the CMB really probes: equality redshift...

 Ratio of 3<sup>rd</sup> and 1<sup>st</sup> peaks sensitive to the redshift of matter-radiation equality via the early ISW effect. Exact degeneracy between the physical matter density  $\omega_{\rm m}$  and  $N_{\rm eff}$ .

$$1 + z_{\text{eq}} = \frac{\omega_m}{\omega_r} = \frac{\omega_m}{\omega_{\gamma}} \frac{1}{1 + 0.2271 N_{\text{eff}}}$$




## What the CMB really probes: sound horizon...



#### What the CMB really probes: anisotropic stress...

 Apparent (i.e., not physical) partial degeneracies with primordial fluctuation amplitude A<sub>s</sub> and spectral index n<sub>s</sub>.



- However, free-streaming particles have anisotropic stress.
- First real signature of N<sub>eff</sub> in the 3rd peak!

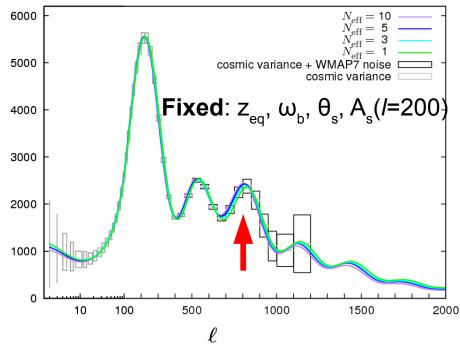
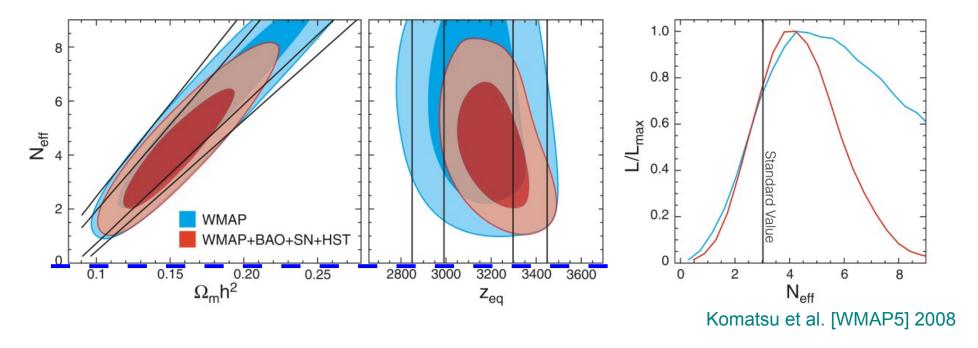
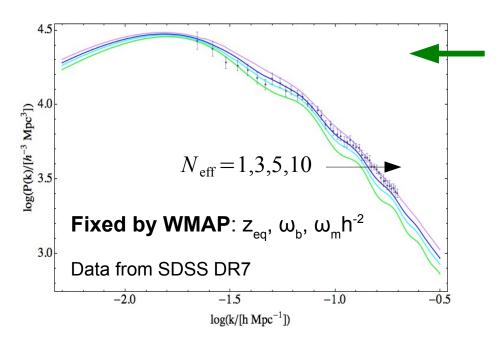



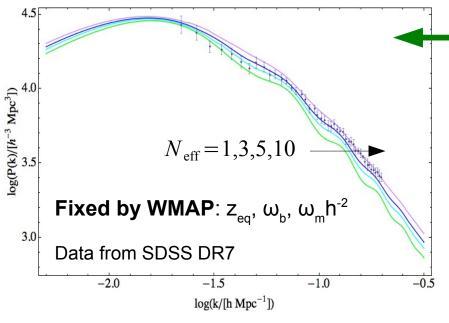

Figure courtesy of J. Hamann


Measurement of the third peak (since WMAP-5) gives lower limit on N<sub>eff</sub>
 from WMAP alone (without supplementary large-scale structure data).



- **Upper limit** requires combination of WMAP with other observations to break the remaining  $N_{\text{eff}} \omega_{\text{m}} h$  parameter degeneracies.
  - Pinning down either  $\omega_m$  or h will do!

from local (z<0.1) expansion rate measurements


# Breaking the remaining parameter degeneracies...



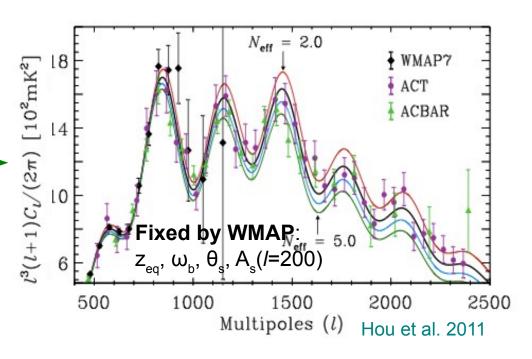
Large-scale matter power spectrum (probes baryon fraction)

$$f_b \equiv \frac{\omega_b}{\omega_m}$$
 fixed by CMB

## Breaking the remaining parameter degeneracies...



log(k/[h Mpc<sup>-1</sup>])


CMB damping tail

(probes photon diffusion scale)

ACT since 2010 
$$\theta_d = \frac{r_d}{\theta_s} \propto \omega_m^{1/4}$$
Fixed by WMAP

Large-scale matter power spectrum (probes baryon fraction)

$$f_b \equiv \frac{\omega_b}{\omega_m} \leftarrow \omega_b \text{ fixed by CMB}$$



# 2. Connection to the short baseline sterile neutrino...

# Experimental anomalies & the sterile v interpretation...

Best-fits parameters: e.g., Kopp, Maltoni & Schwetz 2011; Giunti & Laveder 2011

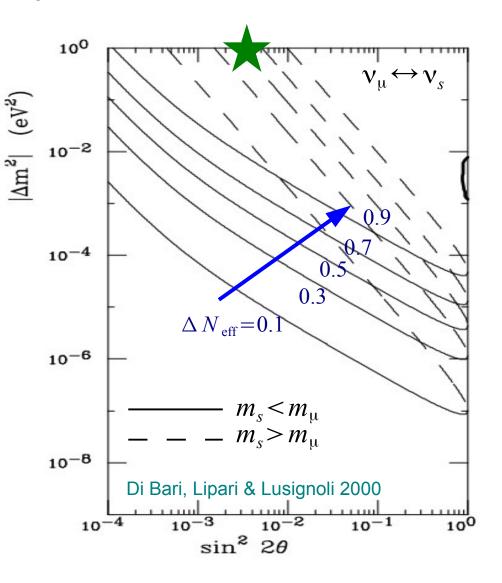
#### Reactor experiments only

|     | $\Delta m_{41}^2 \; [\mathrm{eV^2}]$ | $ U_{e4} $ | $\Delta m_{51}^2 \; [\mathrm{eV}^2]$ | $ U_{e5} $ | $\chi^2/\mathrm{dof}$ |
|-----|--------------------------------------|------------|--------------------------------------|------------|-----------------------|
| 3+1 | 1.78                                 | 0.151      |                                      |            | 50.1/67               |
| 3+2 | 0.46                                 | 0.108      | 0.89                                 | 0.124      | 46.5/65               |
|     |                                      |            | \                                    |            |                       |

Table I: Best fit points for the 3+1 and 3+2 scenarios from reactor anti-neutrino data. The total number of data points is 69 (Bugey3 spectra plus 9 SBL rate measurements; we have omitted data from Chooz and Palo Verde, which are not very sensitive to the model parameters, but would dilute the  $\chi^2$  by introducing 15 additional data points). For no oscillations we have  $\chi^2/\text{dof} = 59.0/69$ .

# Global short baseline (including LSND+MiniBooNE)

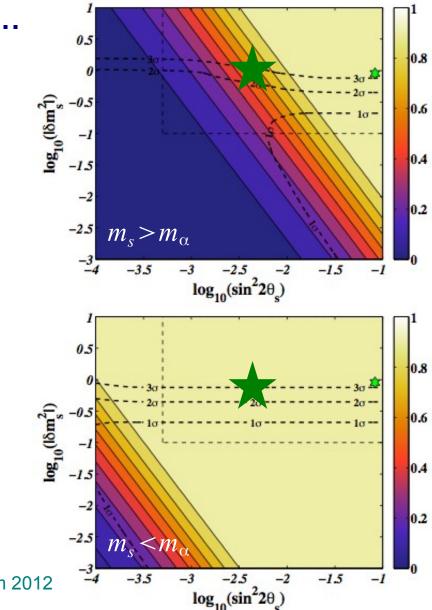
|       | /\   |             |      | <b>\</b>                                                |
|-------|------|-------------|------|---------------------------------------------------------|
|       |      |             |      | $U_{e5}$ $ U_{\mu 5} $ $\delta/\pi$ $\chi^2/\text{dof}$ |
| 3+2   | 0.47 | 0.128 0.16  | 0.87 | 0.138 0.148 1.64 110.1/130                              |
| 1+3+1 | 0.47 | 0.129 0.154 | 0.87 | 0.142 0.163 0.35 106.1/130                              |
|       |      | /           | 1    | <del> </del>                                            |


**Table II**: Parameter values and  $\chi^2$  at the global best fit points for 3+2 and 1+3+1 oscillations ( $\Delta m^2$ 's in eV<sup>2</sup>).

"3+1" "3+2" "1+3+1" 
$$v_s$$
 "0 "1+3+1"  $v_s$  "1+3+1"  $v_s$ 

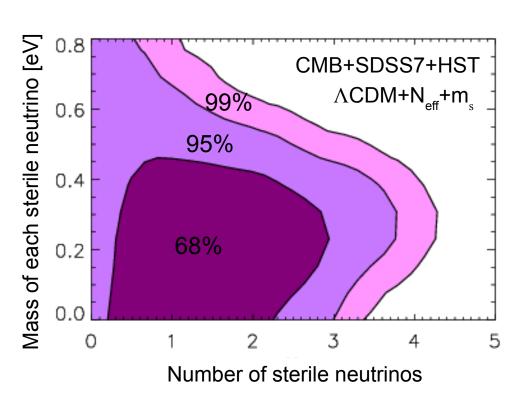
# Light sterile neutrinos and N<sub>eff</sub>...

• SBL-preferred  $\Delta m^2$  and mixing favour the **production and** thermalisation of sterile neutrinos in the early universe via  $v_{\alpha} \leftrightarrow v_{s}$  oscillations +  $v_{\alpha}$  scattering.


- Can easily produce an excess relativistic energy density of ΔN<sub>eff</sub> ~ 1.
- → Sterile states have the same temperature as the SM neutrinos.



# Light sterile neutrinos and N<sub>eff</sub>...


SBL-preferred Δm² and mixing favour the production and thermalisation of sterile neutrinos in the early universe via ν<sub>α</sub> ↔ ν<sub>s</sub> oscillations + ν<sub>α</sub> scattering.

- Can easily produce an excess relativistic energy density of ΔN<sub>eff</sub> ~ 1.
- → Sterile states have the same temperature as the SM neutrinos.



# Can the short baseline sterile neutrino explain $N_{eff} > 3$ ?

- Short answer: Not so easy.
- Reason: eV mass neutrinos violate CMB+LSS hot dark matter bounds.



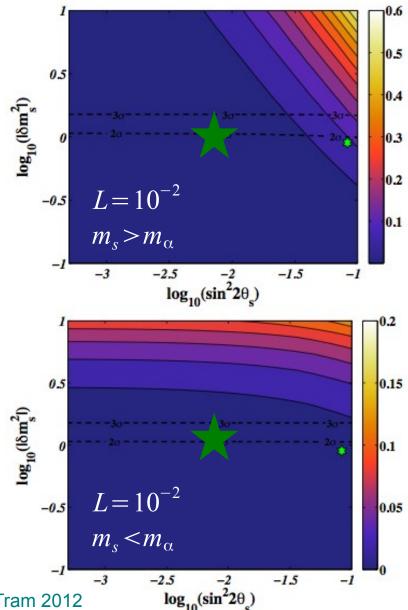
• 3+1 thermalised sterile:

$$m_s < 0.48 \text{ eV} (95\% C.I.)$$

Lab best-fit:  $m_s \sim 1$  eV

• 3+2 thermalised sterile:

$$m_{s1} + m_{s2} < 0.9$$
 eV  $(95\% C.I.)$ 


Lab best-fit:  $m_{s1} \sim 0.7$  eV,  $m_{s2} \sim 0.9$  eV

# Is there a way out? Plan A...

 Suppress sterile neutrino thermalisation using, e.g., a large lepton asymmetry (L >> B ~ 10<sup>-10</sup>).

Foot & Volkas 1995

- Generating a large lepton asymmetry requires new physics.
- If complete suppression, then
   N<sub>eff</sub> > 3 must be explained
   by some other physics (sub eV thermal axions, hidden
   photons, etc.?)



Hannestad, Tamborra & Tram 2012

Grin, Smith, and Kamionkowski, Axion constrains in non-standard thermal histories, arXiv:0711.1352 [astro-ph]; Kawasaki, Nakayama ,and Senami, Cosmological implications of supersymmetric axion models, arXiv:0711.3083 [hep-ph]; Feng, Tu and Yu, Thermal Relics in Hidden Sectors, arXiv:0808.2318 [hep-ph]; **Nelson and Walsh**, Chameleon vector bosons, arXiv:0802.0762 [hep-ph]; Ackermann, Buckley, Carroll, and Kamionkowski, Dark Matter and Dark Radiation, arXiv:0810.5126 [hep-ph]; **Mahato**, Torsion, Dirac Field, Dark Matter and Dark Radiation, gr-qc/0603134; Jäckel, Redondo, and Ringwald, Signatures of a hidden cosmic microwave background, arXiv:0804.4157 [astro-ph]; Hasenkamp, Dark radiation from the axino solution of the gravitino problem, arXiv:1107.4319 [hep-ph]; Kobayashi, Takahashi, Takahashi, and Yamaguchi, Dark Radiation from Modulated Reheating, arXiv:1111.1336 [astro-ph.CO]; Feng, **Rentala and Surujon**, WIMPless Dark Matter from an AMSB Hidden Sector with No New Mass Parameters, arXiv:1111.4479 [hep-ph]; **Hooper, Queiroz, and Gnedin,** Non-Thermal Dark Matter Mimicking An Additional Neutrino Species In The Early Universe, arXiv:1111.6599 [astro-ph.CO]; Menestrina and Scherrer, Dark Radiation from Particle Decays during Big Bang Nucleosynthesis, arXiv:1111.0605 [astro-ph.CO]; Aslanbeigi, Robbers, Foster, Kohri, and Afshordi, Phenomenology of Gravitational Aether as a solution to the Old Cosmological Constant Problem, arXiv:1106.3955 [astro-ph.CO]; Chen and Lin, Cosmon as the Modulon: Non-Gaussianity from Dark Enegry, arXiv:1104.0982 [hep-ph]; Das and Weiner, Late Forming Dark Matter in Theories of Neutrino Dark Energy, astro-ph/0611353; Nakayama, Takahashi, and Yanagida, A theory of extra radiation in the Universe, arXiv:1010.5693 [hep-ph;] **Fischler and Meyers**, Dark Radiation Emerging After Big Bang Nucleosynthesis?, arXiv:1011.3501 [astro-ph.CO]; **Dreiner, Hanussek, Kim, and Sarkar**, Gravitino cosmology with a very light neutralino, arXiv:1111.5715 [hep-ph]; Foot, Mirror dark matter cosmology predictions for Neff[CMB] and Neff[BBN], arXiv:1111.6366 [astro-ph.CO]; Jeong and Takahashi, Light Higgsino from Axion Dark Radiation, arXiv:1201.4816 [hep-ph]; Kaplan, Krnjaic, Rehermann, and Wells, Dark Atoms: Asymmetry and Direct Detection, arXiv:1105.2073 [hep-ph]; Cicoli, Large extra dimensions and light hidden photons from anisotropic string vacua, arXiv:1111.0790 [hep-th];

## Is there a way out? Plan B...

- Failing to suppress  $v_s$  thermalisation, exploit parameter degeneracies in the CMB+LSS to engineer a good fit.
- No room for play within the  $\Lambda$ CDM model, but extensions of  $\Lambda$ CDM can help to relax the hot dark matter constraint on m<sub>s</sub>:
  - Non-standard dark energy equation of state.
  - Modified gravity.
  - Non-flat spatial geometry.
  - Even more massless degrees of freedom.

- ...

## Is there a way out? Plan B...

- Failing to suppress  $v_s$  thermalisation, exploit parameter degeneracies in the CMB+LSS to engineer a good fit.
- No room for play within the  $\Lambda$ CDM model, but extensions of  $\Lambda$ CDM can help to relax the hot dark matter constraint on m $_{\rm s}$ :
  - Non-standard dark energy equation of state.
  - Modified gravity.
  - Non-flat spatial geometry.
  - Even more massless degrees of freedom.

1 x 1 eV sterile neutrino can be reasonably accommodated.

1 x 2eV or 2 x 1 eV is still problematic...

- ...

## Is there a way out? Plan B...

Modified gravity scenario to explain accelerated expansion in lieu of dark energy /

An example: accommodating 1eV sterile neutrinos with f(R) gravity:

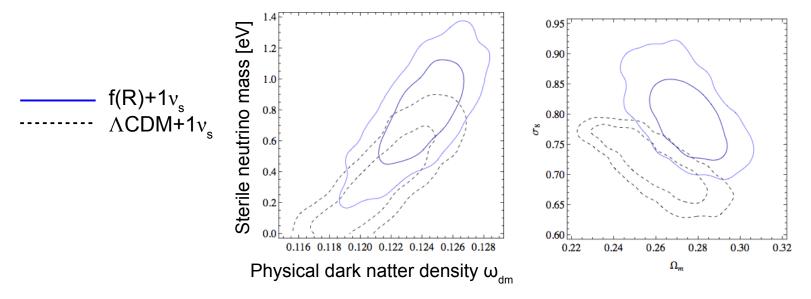
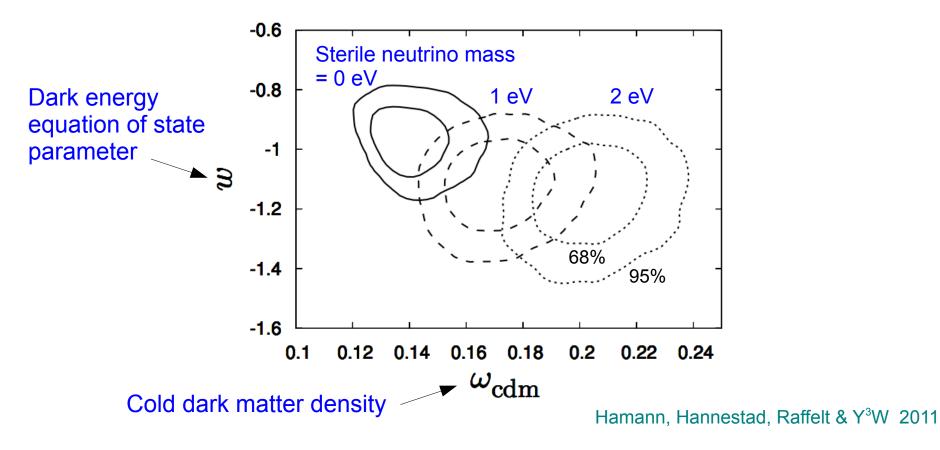




FIG. 1: 1 and  $2\sigma$  contours of the sterile neutrino mass (left) and  $\sigma_8$  (right) for the cases with three massless and one massive neutrinos in the  $\Lambda$ CDM model (dashed black) and f(R) gravity (solid blue).  $\chi_{\text{eff}}^2 = 3774.1$  and 3767.0, respectively.

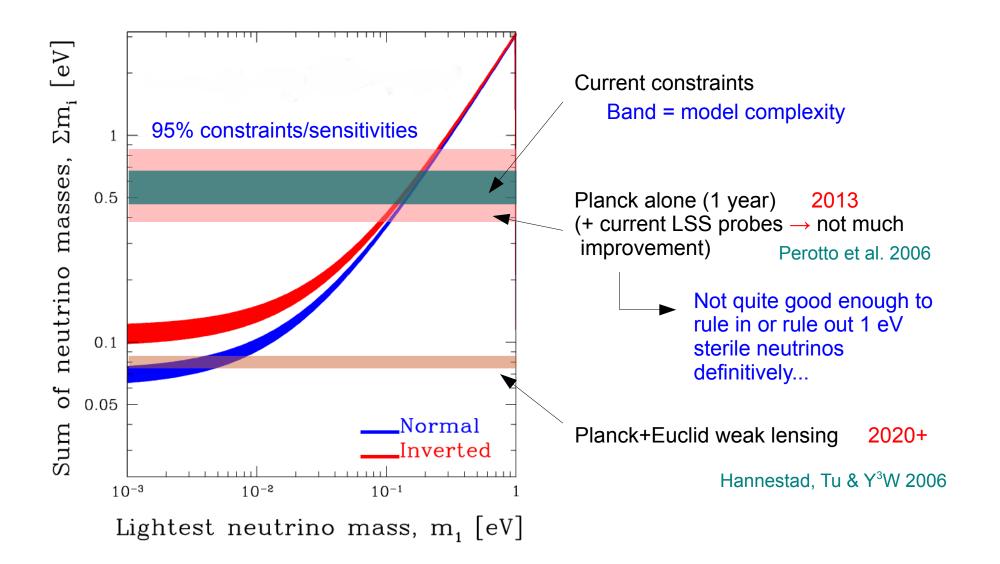
## Necessary side effects...

 Exploiting parameter degeneracies also implies that other (unrelated) cosmological parameter values will change.



# Planck and N<sub>eff</sub>...

• If N<sub>eff</sub> is as large as 4, it will be settled almost immediately by Planck (launched May 14, 2009; public data release early 2013).


68% sensitivities

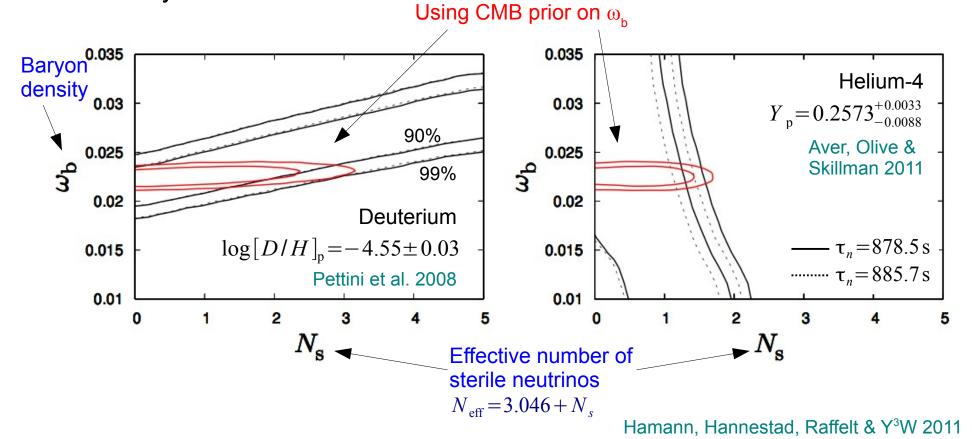
| Experiment   | $f_{ m sky}$ | $\theta_b$ | $w_T^{-1/2}$ | $w_P^{-1/2}$ | $\Delta N_{ u}$     | $\Delta N_{ u}$ | $\Delta N_{\nu}$ (free Y) |
|--------------|--------------|------------|--------------|--------------|---------------------|-----------------|---------------------------|
|              |              |            | $[\mu K']$   | $[\mu K']$   | $\operatorname{TT}$ | TT+TE+EE        | TT+TE+EE                  |
| Planck       | 0.8          | 7'         | 40           | 56           | 0.6                 | 0.20            | 0.24                      |
| ACT          | 0.01         | 1.7'       | 3            | 4            | 1                   | 0.47            | 0.9                       |
| ACT + Planck |              |            |              |              | 0.4                 | 0.18            | 0.24                      |
| CMBPOL       | 0.8          | 4'         | 1            | 1.4          | 0.12                | 0.05            | 0.09                      |

Bashinsky & Seljak 2004

Helium fraction as a free parameter

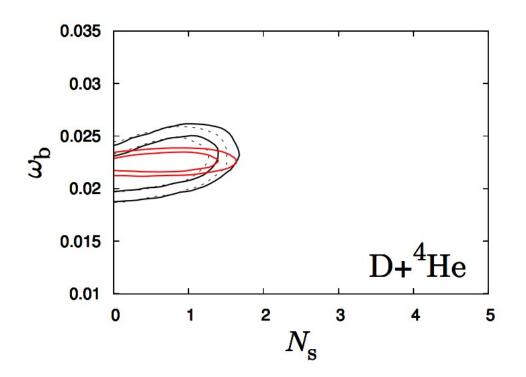
#### Planck and neutrino mass...

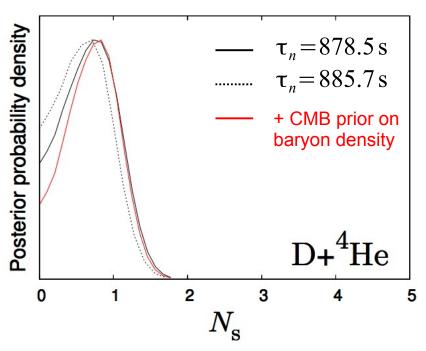



## Summary...

- Current precision cosmological data show a preference for extra relativistic degrees of freedom (beyond 3 neutrinos).
- Sterile neutrino interpretation of short baseline neutrino anomalies does not quite fit into the simplest picture though...
  - 3+2: **Too many** for BBN
  - 3+1, 3+2: **Too heavy** for CMB/LSS
- Non-trivial extensions to ΛCDM can reasonably accommodate 1 x 1 eV fully thermalised sterile neutrino species.
- Planck with tell (at least part of the story).

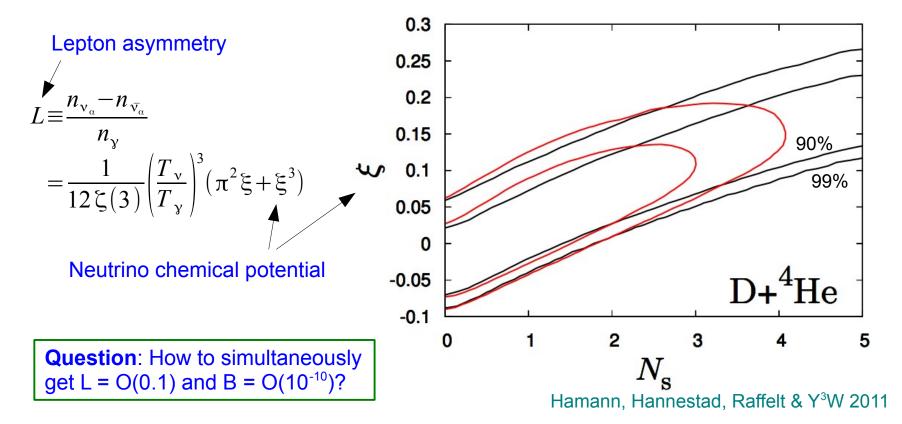
# 3. Extra slides: BBN


# Evidence for $N_{eff} > 3$ from BBN...


 Light element abundances are sensitive to excess relativistic energy density.



# Evidence for $N_{eff} > 3$ from BBN...


- Mild preference for N<sub>eff</sub> > 3 (or N<sub>s</sub> > 0) from Deuterium+Helium-4.
- But N<sub>s</sub> = 2 is strongly disfavoured.





## Quick fix: degenerate BBN...

- Introduce a neutrino chemical potential (= O(0.1) lepton asymmetry).
- Then even  $N_s = 3$  is allowed by BBN.

