Testing the Reactor and Gallium Anomalies: The 4th ν Hypothesis

CERN Town Meeting
May 14th-16th 2012

Thierry Lasserre
CEA/DSM/Irfu
Neutrino Anomalies & 4th Neutrino

<table>
<thead>
<tr>
<th>Anomaly</th>
<th>Source</th>
<th>Type</th>
<th>Sensitivity to Oscillation</th>
<th>Channel</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSND</td>
<td>Decay-at-Rest</td>
<td>$\bar{\nu}_\mu \rightarrow \bar{\nu}_e$</td>
<td>Total Rate, Energy</td>
<td>CC</td>
<td>3.8 σ</td>
</tr>
<tr>
<td>MiniBoone</td>
<td>Short baseline</td>
<td>$\bar{\nu}_\mu \rightarrow \bar{\nu}_e$</td>
<td>Total Rate, Energy</td>
<td>CC</td>
<td>3 σ</td>
</tr>
<tr>
<td>Gallium</td>
<td>Electron Capture</td>
<td>ν_e dis.</td>
<td>Total Rate</td>
<td>CC</td>
<td>2.7 σ</td>
</tr>
<tr>
<td>Reactor</td>
<td>Beta-decay</td>
<td>$\bar{\nu}_e$ dis.</td>
<td>Total Rate, Energy</td>
<td>CC</td>
<td>3.0 σ</td>
</tr>
<tr>
<td>Cosmology</td>
<td>Big-Bang</td>
<td>All</td>
<td>Number of ν, N_{eff}</td>
<td>CC</td>
<td>\approx2 σ</td>
</tr>
</tbody>
</table>

→ could be interpreted by an existing eV² 4th neutrino state...

Th. Lasserre - CERN - 05/2012
Neutrino Anomalies & 4th Neutrino

this talk

<table>
<thead>
<tr>
<th>Anomaly</th>
<th>Source</th>
<th>Type</th>
<th>Sensitivity to Oscillation</th>
<th>Channel</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSND</td>
<td>Decay-at-Rest</td>
<td>$\bar{\nu}{\mu} \rightarrow \bar{\nu}{e}$</td>
<td>Total Rate, Energy</td>
<td>CC</td>
<td>3.8 σ</td>
</tr>
<tr>
<td>MiniBoone</td>
<td>Short baseline</td>
<td>$\bar{\nu}{\mu} \rightarrow \bar{\nu}{e}$</td>
<td>Total Rate, Energy</td>
<td>CC</td>
<td>3 σ</td>
</tr>
<tr>
<td>Gallium</td>
<td>Electron Capture</td>
<td>ν_{e} dis.</td>
<td>Total Rate</td>
<td>CC</td>
<td>2.7 σ</td>
</tr>
<tr>
<td>Reactor</td>
<td>Beta-decay</td>
<td>$\bar{\nu}_{e}$ dis.</td>
<td>Total Rate, Energy</td>
<td>CC</td>
<td>3.0 σ</td>
</tr>
<tr>
<td>Cosmology</td>
<td>Big-Bang</td>
<td>All</td>
<td>Number of ν, N_{eff}</td>
<td>CC</td>
<td>≈ 2 σ</td>
</tr>
</tbody>
</table>

→ could be interpreted by an existing eV2 4th neutrino state...

Th. Lasserre - CERN - 05/2012
The Gallium Neutrino Anomaly

- Tests of the solar neutrino detectors GALLEX and SAGE
- 4 calibration runs with intense ≈1 MCi neutrino sources
 - 2 runs at Gallex with a 51Cr source (750 keV ν_e emitter)
 - 1 run at SAGE with a 51Cr source
 - 1 run at SAGE with a 37Ar source (810 keV ν_e emitter)
- Observed/Expected Event Ratio: $R = 0.86 \pm 0.05$

Th. Lasserre - CERN - 05/2012
The Gallium Neutrino Anomaly

Fit to ν_e disappearance hypothesis (3+1)

$$\begin{pmatrix} \nu_e \\ \nu_s \end{pmatrix} = \begin{pmatrix} \cos \theta_{\text{new}} & \sin \theta_{\text{new}} \\ -\sin \theta_{\text{new}} & \cos \theta_{\text{new}} \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_{\text{new}} \end{pmatrix}$$

$$P_{\nu_e \to \nu_e}(L, E) = 1 - \sin^2(2\theta_{\text{new}}) \sin^2 \left(\frac{\Delta m_{\text{new}}^2 L}{E} \right)$$

$\Delta m_{\text{new}}^2 \approx eV^2$

No-oscillation hypothesis disfavored at about 2.7σ
The Reactor Antineutrino Anomaly

2) Reanalysis 19 short Baseline Experiments Results, PRD83, 073006 (2011)

<table>
<thead>
<tr>
<th>result</th>
<th>Det. type</th>
<th>τ_n (s)</th>
<th>235U</th>
<th>239Pu</th>
<th>238U</th>
<th>241Pu</th>
<th>old</th>
<th>new</th>
<th>err(%)</th>
<th>corr(%)</th>
<th>L(m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bugey-4</td>
<td>3He+H$_2$O</td>
<td>888.7</td>
<td>0.538</td>
<td>0.328</td>
<td>0.078</td>
<td>0.056</td>
<td>0.987</td>
<td>0.926</td>
<td>3.0</td>
<td>3.0</td>
<td>15</td>
</tr>
<tr>
<td>ROVNO91</td>
<td>3He+H$_2$O</td>
<td>888.6</td>
<td>0.614</td>
<td>0.274</td>
<td>0.074</td>
<td>0.038</td>
<td>0.985</td>
<td>0.924</td>
<td>3.9</td>
<td>3.0</td>
<td>18</td>
</tr>
<tr>
<td>Bugey-3-I</td>
<td>6Li-LS</td>
<td>889</td>
<td>0.538</td>
<td>0.328</td>
<td>0.078</td>
<td>0.056</td>
<td>0.988</td>
<td>0.930</td>
<td>4.8</td>
<td>4.8</td>
<td>15</td>
</tr>
<tr>
<td>Bugey-3-II</td>
<td>6Li-LS</td>
<td>889</td>
<td>0.538</td>
<td>0.328</td>
<td>0.078</td>
<td>0.056</td>
<td>0.994</td>
<td>0.936</td>
<td>4.9</td>
<td>4.8</td>
<td>40</td>
</tr>
<tr>
<td>Bugey-3-III</td>
<td>6Li-LS</td>
<td>889</td>
<td>0.538</td>
<td>0.328</td>
<td>0.078</td>
<td>0.056</td>
<td>0.915</td>
<td>0.861</td>
<td>14.1</td>
<td>4.8</td>
<td>95</td>
</tr>
<tr>
<td>Goesgen-I</td>
<td>3He+LS</td>
<td>897</td>
<td>0.620</td>
<td>0.274</td>
<td>0.074</td>
<td>0.042</td>
<td>1.018</td>
<td>0.949</td>
<td>6.5</td>
<td>6.0</td>
<td>38</td>
</tr>
<tr>
<td>Goesgen-II</td>
<td>3He+LS</td>
<td>897</td>
<td>0.584</td>
<td>0.298</td>
<td>0.068</td>
<td>0.050</td>
<td>1.045</td>
<td>0.975</td>
<td>6.5</td>
<td>6.0</td>
<td>45</td>
</tr>
<tr>
<td>Goesgen-II</td>
<td>3He+LS</td>
<td>897</td>
<td>0.543</td>
<td>0.329</td>
<td>0.070</td>
<td>0.058</td>
<td>0.975</td>
<td>0.909</td>
<td>7.6</td>
<td>6.0</td>
<td>65</td>
</tr>
<tr>
<td>ILL</td>
<td>3He+LS</td>
<td>889</td>
<td>\approx 1</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0.832</td>
<td>0.788</td>
<td>9.5</td>
<td>6.0</td>
<td>9</td>
</tr>
<tr>
<td>Krasn. I</td>
<td>3He+PE</td>
<td>899</td>
<td>\approx 1</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>1.013</td>
<td>0.920</td>
<td>5.8</td>
<td>4.9</td>
<td>33</td>
</tr>
<tr>
<td>Krasn. II</td>
<td>3He+PE</td>
<td>899</td>
<td>\approx 1</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>1.031</td>
<td>0.937</td>
<td>20.3</td>
<td>4.9</td>
<td>92</td>
</tr>
<tr>
<td>Krasn. III</td>
<td>3He+PE</td>
<td>899</td>
<td>\approx 1</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0.989</td>
<td>0.931</td>
<td>4.9</td>
<td>4.9</td>
<td>57</td>
</tr>
<tr>
<td>SRP I</td>
<td>Gd-LS</td>
<td>887</td>
<td>\approx 1</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0.987</td>
<td>0.936</td>
<td>3.7</td>
<td>3.7</td>
<td>18</td>
</tr>
<tr>
<td>SRP II</td>
<td>Gd-LS</td>
<td>887</td>
<td>\approx 1</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>1.055</td>
<td>1.001</td>
<td>3.8</td>
<td>3.7</td>
<td>24</td>
</tr>
<tr>
<td>ROVNO88-1I</td>
<td>3He+PE</td>
<td>898.8</td>
<td>0.607</td>
<td>0.277</td>
<td>0.074</td>
<td>0.042</td>
<td>0.969</td>
<td>0.901</td>
<td>6.9</td>
<td>6.9</td>
<td>18</td>
</tr>
<tr>
<td>ROVNO88-2I</td>
<td>3He+PE</td>
<td>898.8</td>
<td>0.603</td>
<td>0.276</td>
<td>0.076</td>
<td>0.045</td>
<td>1.001</td>
<td>0.932</td>
<td>6.9</td>
<td>6.9</td>
<td>18</td>
</tr>
<tr>
<td>ROVNO88-1S</td>
<td>Gd-LS</td>
<td>898.8</td>
<td>0.606</td>
<td>0.277</td>
<td>0.074</td>
<td>0.043</td>
<td>1.026</td>
<td>0.955</td>
<td>7.8</td>
<td>7.2</td>
<td>18</td>
</tr>
<tr>
<td>ROVNO88-2S</td>
<td>Gd-LS</td>
<td>898.8</td>
<td>0.557</td>
<td>0.313</td>
<td>0.076</td>
<td>0.054</td>
<td>1.013</td>
<td>0.943</td>
<td>7.8</td>
<td>7.2</td>
<td>25</td>
</tr>
<tr>
<td>ROVNO88-3S</td>
<td>Gd-LS</td>
<td>898.8</td>
<td>0.606</td>
<td>0.274</td>
<td>0.074</td>
<td>0.046</td>
<td>0.990</td>
<td>0.922</td>
<td>7.2</td>
<td>7.2</td>
<td>18</td>
</tr>
</tbody>
</table>
The Reactor Antineutrino Anomaly

- Observed/predicted averaged event ratio: $R = 0.927 \pm 0.023$
 - i) Improved reactor neutrino spectra
 - ii) Reevaluation of IBD cross sections (neutron life time @878 s)
 - iii) Accounting for long-lived radioisotopes accumulating in reactors
- 3.0σ deviation with respect to $R=1$ (rate only)

Experiments measured a ν_e deficit

Terra Incognita

Th. Lasserre - CERN - 05/2012
The Reactor Antineutrino Anomaly

Rate Only Analysis

- Best Δm^2 fit value shifts upward when including the Bugey-3 energy spectrum

Rate + Shape Only Analysis

- Bugey-3 did not observe energy spectrum distortion (but large PWR core extension)

- Puzzling ILL results (only experiment <10m from compact core)
Combining Gallium & Reactor Anomalies

No-oscillation hypothesis disfavored at 3.6σ

\[\Delta m^2_{\text{new}} \approx eV^2 \]

\[\sin^2(2\theta_{ee}) \approx 0.1 \]
Synthesis of reactor ν oscillations

- New short-baseline neutrino oscillation experiments are needed

Th. Lasserre - CERN - 05/2012
4th-V Reactor Proposal Overview

<table>
<thead>
<tr>
<th>Proposal</th>
<th>Reactor</th>
<th>Fuel (#fissions)</th>
<th>Core Size (m)</th>
<th>$<L>$ (m)</th>
<th>Depth (mwe)</th>
<th>Status</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nucifer Saclay</td>
<td>Osiris</td>
<td>^{235}U</td>
<td><1</td>
<td>7</td>
<td>5</td>
<td>Data Taking</td>
<td>Non proliferation $1 \text{ m}^3 \text{ Gd-LS}$ Mostly Rate + Shape?</td>
</tr>
<tr>
<td>Stereo Genoble</td>
<td>ILL</td>
<td>^{235}U</td>
<td><1</td>
<td>10</td>
<td>10</td>
<td>Proposal</td>
<td>2 $\text{ m}^3 \text{ Gd-LS}$ Rate + Mostly shape</td>
</tr>
<tr>
<td>SCRAMM (CA)</td>
<td>San-Onofre</td>
<td>$^{235,238}\text{U}$, $^{239,241}\text{Pu}$</td>
<td>3x3.8</td>
<td>24</td>
<td>30</td>
<td>Proposal</td>
<td>2 $\text{ m}^3 \text{ Gd-LS}$ Mostly Rate + Shape</td>
</tr>
<tr>
<td>SCRAMM (Idaho)</td>
<td>ATR</td>
<td>^{235}U</td>
<td><1</td>
<td>12</td>
<td>15</td>
<td>Proposal</td>
<td>2 $\text{ m}^3 \text{ Gd-LS}$ Rate + Mostly shape</td>
</tr>
<tr>
<td>DANSS (Russia)</td>
<td>KNPP</td>
<td>$^{235,238}\text{U}$, $^{239,241}\text{Pu}$</td>
<td>few</td>
<td>14</td>
<td>70</td>
<td>Being Built</td>
<td>Segmented detector 1 m^3 Rate + Shape?</td>
</tr>
<tr>
<td>NIST (US)</td>
<td>NCNR</td>
<td>^{235}U</td>
<td>\approx1</td>
<td>4-11</td>
<td>0</td>
<td>Proposal</td>
<td>Rate + Mostly shape</td>
</tr>
</tbody>
</table>
Nucifer, Osiris (Saclay)

- First goal: Non Proliferation: P_{th} & Fuel Composition U/Pu
- Osiris Site in Saclay
 - 70 MW Research reactor, size: 57x57x60 cm
 - Detector Size: 1.2x0.7m (850l)
 - Shallow Depth: 5 m.w.e
 - $<L>=7.0\pm0.3$ m \rightarrow high gamma ray flux

- Status: start taking data - Commissioning
 - Scintillator upgrade
 - γ-ray Shielding upgrade
The SCRAAM Proposal (LLNL)

- **Detector**
 - 2 tons Gd-LS
 - 150 days,
 - 4% Normalization
 - 1.5% $\varepsilon_{\text{scale}}$
 - S/N = 8/1

- **Site 1: extended core**
 - SONGS: 3 GW PWR
 - 24 m baseline

- **Site 2: compact core**
 - ATR 150 MW research reactor
 - 12 m baseline

- **Sensitivity (99%, shape-only)**
Stereo, ILL (courtesy D. Lhuillier)

Search for a new oscillation pattern few meters away from a compact core

- 1x1x2 m target vessel filled with Gd-doped LS
- 5 baseline bins materialized by diffusive foils
- Simple and safe readout from top
- Side g catcher for better resolution and e_n (55%)
- Full coverage of CH2 and Pb shielding + top muon veto

Investigating a new potential site @ ILL research reactor
- Saclay
- TU Munich
- LAPP

- Phase shift of the E oscillation pattern along the detector axis \rightarrow extra control of the background subtraction

Th. Lasserre - CERN - 05/2012
Stereo, ILL (courtesy D. Lhuillier)

- 300 days, 50 W, $L_0 = 8$ m
- $S/B = 1.5$
- Threshold $E_{\text{vis}} > 2$ MeV
- Neutron cut = 6 MeV
- 5 baseline bins of 40 cm
- Complete det. Response (Geant4)
- 2% E scale + error budget of predicted spectra
- $\sim 700 \overline{\nu}/d$

→ Do NOT rely on Reactor Flux Prediction
→ Cover the reactor antineutrino anomaly parameter space

Th. Lasserre - CERN - 05/2012
Oscillometry inside a ν-detector

- Place the ν-emitter inside or close to existing detectors
 - Very short Baseline
 - Low Background
- ν-source at center
 \[
 \frac{dN_{\nu}}{dR} \propto \left[1 - \sin^2(2\theta) \sin^2\left(1.27 \frac{\Delta m^2 R}{\langle E \rangle}\right) \right]
 \]
- ν-source Outside
 - Complex but specific oscillation pattern - Modest solid angle

ν-emitter
ν-detector $\varnothing=13 \text{ m}$

Th. Lasserre - CERN - 05/2012
V-source Proposal Overview

<table>
<thead>
<tr>
<th>Type</th>
<th>channel</th>
<th>Background</th>
<th>Source</th>
<th>Production</th>
<th>Activity (Mci)</th>
<th>Proposal</th>
</tr>
</thead>
<tbody>
<tr>
<td>ν_e</td>
<td>$\nu_e e \rightarrow \nu_e e$</td>
<td>Compton edge (irreducible)</td>
<td>51Cr</td>
<td>n_{th} irradiation in Reactor</td>
<td>in</td>
<td>>3</td>
</tr>
<tr>
<td></td>
<td>5% E_{res}</td>
<td>ν -Source (out ok but in ?)</td>
<td>0.75 MeV</td>
<td>26d</td>
<td>out</td>
<td>5-10</td>
</tr>
<tr>
<td>$\bar{\nu}_e$</td>
<td>$\bar{\nu}_e p \rightarrow e^+ n$</td>
<td>reactor ν & ν -Source</td>
<td>37Ar</td>
<td>n_{fast} irradiation in Reactor (breeder)</td>
<td>in</td>
<td>>1</td>
</tr>
<tr>
<td></td>
<td>$E_{th}=1.8$ MeV</td>
<td>$e^+ n$ (e$^+$,n) Coincidence</td>
<td>0.8 MeV</td>
<td>35d</td>
<td>out</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>5% E_{res}</td>
<td></td>
<td>144Ce</td>
<td>spent nuclear fuel reprocessing</td>
<td></td>
<td>0.005-0.05</td>
</tr>
<tr>
<td></td>
<td>15cm R_{res}</td>
<td>Background free!</td>
<td>90Sr</td>
<td></td>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>106Rh</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>42Ar</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Th. Lasserre - CERN - 05/2012
3 Mci 51Cr Source at Baksan

- Produce 3.5 kg of enriched 50Cr (97%) and irradiation to 3 Mci

- Deploy in a new dual Metallic Ga Target at Baksan (4700 mwe)
 - 9 days exposure
 - 71Ge extraction
 - 51Cr activity measurement
 - Start new cycle

- Analyze ratio of measured capture rates to predicted rate in inner and outer zones and their ratio R_2/R_1

- Not sensitive to γ-ray background
Comment on ν_e sources in LAND

- A strong 37Ar 1 Mci ν source at the center of a large LS detector
- Elastic scattering on e^- (few 10000 evts, 150 days, $E>250$ keV)
- Irreducible Backgrounds: 7Be Solar Neutrinos!

- Large S/N \rightarrow Need few Mci 37Ar source inside
- Challenging deployment of 51Cr inside (outside OK see Borexino talk)

$$\Delta m^2_{\text{new}} = 2 \text{eV}^2 \text{ and } \sin^2(2\theta_{\text{new}})=0.1$$
V-source Proposal Overview

<table>
<thead>
<tr>
<th>Type</th>
<th>channel</th>
<th>Background</th>
<th>Source</th>
<th>Production</th>
<th>Activity (Mci)</th>
<th>Proposal</th>
</tr>
</thead>
<tbody>
<tr>
<td>ν_e</td>
<td>$\nu_e e \rightarrow \nu_e e$</td>
<td>Compton edge</td>
<td>^{51}Cr</td>
<td>n_{th} irradiation in Reactor</td>
<td>in</td>
<td>Baksan LENS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>out</td>
<td>Borexino SNO+</td>
</tr>
<tr>
<td></td>
<td>$5% E_{res}$</td>
<td>Solar ν (irreducible)</td>
<td>^{37}Ar</td>
<td>n_{fast} irradiation in Reactor (breeder)</td>
<td>in</td>
<td>Ricochet (NC)</td>
</tr>
<tr>
<td></td>
<td>$15\text{cm } R_{res}$</td>
<td>ν -Source (out ok but in ?)</td>
<td></td>
<td></td>
<td>out</td>
<td></td>
</tr>
<tr>
<td>$\bar{\nu}_e$</td>
<td>$\bar{\nu}_e p \rightarrow e^+ n$</td>
<td>reactor ν & ν -Source</td>
<td>^{144}Ce</td>
<td>spent nuclear fuel reprocessing</td>
<td>in</td>
<td>CeLAND Borexino</td>
</tr>
<tr>
<td></td>
<td>$E_{th}=1.8 \text{ MeV}$</td>
<td></td>
<td></td>
<td></td>
<td>out</td>
<td>Daya-Bay</td>
</tr>
<tr>
<td></td>
<td>(e^+,n)</td>
<td></td>
<td>^{90}Sr</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Coincidence</td>
<td></td>
<td>^{106}Rh</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$5% E_{res}$</td>
<td></td>
<td>^{42}Ar</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$15\text{cm } R_{res}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Th. Lasserre - CERN - 05/2012

- acrylics/nylon sphere: R=6.5 m
- Chimney: R>0.5 m
- Suspension System
- Antineutrino Generator (R=4cm) & Passive Shielding (R=40 cm)
Antineutrino Source: $^{144}\text{Ce}-^{144}\text{Pr}$

(*ITEP N°90 1994, PRL 107, 201801, (2011)*)

- **1st Trick:** $\bar{\nu}_e$ source detected via $\bar{\nu}_e + p \rightarrow e^+ + n$ (Thr=1.8 MeV)
 - High cross section \rightarrow need (only) kCi activity \rightarrow Compactness
 - (e^+, n) detected in coincidence \rightarrow Background free experiment

- **2nd Trick:** $^{144}\text{Ce}-^{144}\text{Pr}$
 - Abundant fission product
 - ^{144}Ce: long-lived & low-Q_β
 \rightarrow Enough time to produce, transport, use
 - ^{144}Pr: short-lived & high-Q_β
 \rightarrow $\bar{\nu}_e$-emitter above threshold
50 kCi 144Ce-144Pr Source & Shield

- Produce a pure source of 50 kCi (2.1015 Bq) of 144Ce
 - Standard reprocessing of 1 ton of spent nuclear fuel
 - Extraction of rare earths
 - Separation of Ce by chromatography
 - Need low level γ-rays or n emitter

- 144Pr emits gamma rays
 - 2.185 MeV γ - 0.7% branching ratio
 - 10$^{-12}$ attenuation needed

- Tungsten Shielding (r=42 cm, 5 tons)
 - 33 cm thickness (18.5 g/cm3)
 - Radiopure (mBq/kg), compatible with oil
CeLAND in KamLAND

- Integration Constraints
 - Radiopurity / Cleanliness
 - Ultra-pure detector
 - Scintillator transparency (>10m)
 - Mechanical
 - 5 ton W-shield (7 pieces)
 - Chimney Ø=55 cm
 - Thermal
 - 50 kCi 144Ce release 200 W
- Data Taking in 2016?
CeLAND: Signal & Background

144Ce-144Pe Emitter Induced Backgrounds

Other Backgrounds

Event rate (in 10 cm radius bins)

Radius R (m)

Th. Lasserre - CERN - 05/2012
CeLAND Expected Signal (Oscillation)

\[
\frac{d^2 N(R, E_\nu)}{dR dE_\nu} = A_0 \cdot n \cdot \sigma(E_\nu) \cdot S(E_\nu) \cdot P(R, E_\nu) \int_0^{t_e} e^{-t/\tau} dt,
\]

Specific energy \((E, R)\) oscillation signatures

Measurement of the oscillation parameters

\[^{144}Pr\bar{\nu}_e\text{-spectrum}\]

Oscillation imprinted inside the detector

\(E_{\text{vis}}\) (MeV)

Energy Spectrum Distortion

Th. Lasserre - CERN - 05/2012
CeLAND: Sensitivity

50 kCi 144Ce-144Pr – 1 year of data

Δm^2_{new} (eV2) vs $\sin^2(2\theta_{\text{new}})$

95% C.L. exclusion

3σ measurement

144Ce – 50 kCi – 1 y – W/Cu shield: 30/5cm, 95% CL
Same as solid curve but shape only
Reactor ν anomaly, PRD 83 073006 (2011), 95% CL
Reactor ν anomaly, PRD 83 073006 (2011), 90% CL

Th. Lasserre - CERN - 05/2012
144Ce-144Pr Proposals

3 Suitable Detectors (may necessitate mechanical upgrades)

Another proposal: a 500 kCi 144Ce-144Pr source in Daya Bay

(D.A. Dwyer et al., arXiv:1109.6036)

500 kCi 144Ce-144Pr source

see Borexino's Talk
500 kCi 144Ce-144Pr in Daya Bay

- 500 kCi of 144Ce in the water pool of the Daya Bay far hall
- Source outside
 - Loose symmetry & ν's (more complex pattern)
 - but easier to deploy
 - γ's attenuated in water
- Multiple source location to probe sterile oscillations
- Sensitivity to the RAA+GAA
Comparison of proposal sensitivities

Contours comparison (95 % CL, 2 dof)

Compilation: G. Mention

RAA
Ce–LAND rate & shape
Ce–LAND shape only
Borexino Ce
Borexino Cr
SAGE 2
Ricochet
LENS–Sterile
Cern–LAr
SNO+ Cr
Daya Bay Ce (500 kCi)
STEREO

Data From
Sterile Neutrino White Paper

Th. Lasserre - CERN - 05/2012
Conclusion & Outlook

- Test of both Reactor & Gallium Anomalies needs Energy and baseline-dependent signatures for an unambiguous resolution

- 3 complementary approaches with ≠ systematics
 - Measurements very close (<15m) to compact nuclear reactor
 - DANSS, NIST, SCRAAM, STERE0, ... : 5 y time scale – few M€
 - Measurements with (anti-)neutrino emitters (10 kCi→10 MCi)
 - Basksan, Borexino, CeLAND, DayaBay, LENS, 5 y time scale – few M€
 - Accelerator based short baseline proposals
 - Based on Lar detectors @CERN & Fermilab
 - Test of the LSND anomaly
 - Test of the RAA+GA anomaly with ≠L & ≠E → oscillation

Th. Lasserre - CERN - 05/2012
Thanks for your attention!
Additional Slides
List of Proposals

- Pion & Kaon Decay In Flight Beams (CERN, Fermilab)
 - Microboone, ICARUS/NESSIE, LArLAr, Nova-NearDet

- Stopped Pion Beams
 - OscSNS

- Short Baseline Reactor Experiments (Beta-decay)
 - Nucifer, SCRAAM, DANSS, Stereo, Poseidon

- Neutrino Generator Experiment (Electron Capture)
 - 51Cr proposals: Borexino, SNO+, Baksan,

- Anti-Neutrino Generator Experiment (Beta-decay)
 - 144Ce proposals: Ce-LAND in KamLAND/Borexino, Daya Bay
4th Neutrino \rightarrow Sterile

- **Status:** 3 active neutrinos ν_e, ν_μ, ν_τ
 - 2 independent Δm^2 (solar 8×10^{-5} eV2 and atmo 2×10^{-3} eV2)

- **Why a 4th neutrino?**
 - Oscillation implying a new mass scale, $\Delta m^2 \approx 1$ eV2

- **Why Sterile?**
 - LEP invisible Z-width measurement, $N_{\text{light-active}} = 3$
 - No (or weak) coupling with the Z & W bosons

- **What about theory?**
 - Most m_ν models involve sterile neutrinos
 - Add right-handed neutrinos also called ‘Sterile’ ν_S
 - BUT mass anywhere from sub-eV to 10^{19} GeV
 - Active ν_e, ν_μ, ν_τ can mix with sterile ν_S

- **Observable?**
 - disappearance of active neutrinos
Main Anomalous Physics Channels

- LSND Anomaly / Miniboone (no conclusive):
 - $\bar{\nu}_\mu \rightarrow \bar{\nu}_e$ & expect ‘small’ mixing angle $\theta_{\mu e}$

- Reactor Anomaly:
 - $\bar{\nu}_e \rightarrow \bar{\nu}_e$ & expect ‘large’ mixing angle θ_{ee}

- Gallium Anomaly:
 - $\nu_e \rightarrow \nu_e$ & expect ‘large’ mixing angle θ_{ee}

- Cosmology: Constraint Effective Number of Degrees of freedom, $N_{\text{eff}} > 3$, in the Universe (not necessarily neutrinos)

- But no precise measurement of:
 - $\nu_\mu \rightarrow \nu_\mu$ & expect ‘large’ mixing angle $\theta_{\mu \mu}$
'4th Neutrino' Astrophysical Indications

Universe Expansion Rate \(H^2 \approx (\rho_\gamma + \rho_\nu) \) \(\rho_\gamma \) given by CMB data

<table>
<thead>
<tr>
<th>Model</th>
<th>Data</th>
<th>(N_{\text{eff}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N_{\text{eff}})</td>
<td>W-5+BAO+SN+H(_0)</td>
<td>4.12(^{+0.87}{-0.85})(^{+1.76}{-1.63})</td>
</tr>
<tr>
<td></td>
<td>W-5+LRG+H(_0)</td>
<td>4.10(^{+0.76}{-0.77})(^{+1.60}{-1.43})</td>
</tr>
<tr>
<td></td>
<td>W-5+CMB+BAO+XLF+(f_{\text{gas}})+H(_0)</td>
<td>3.4(^{+0.5}_{-0.6})</td>
</tr>
<tr>
<td></td>
<td>W-5+LRG+maxBCG+H(_0)</td>
<td>3.77(^{+0.67}{-0.67})(^{+1.37}{-1.24})</td>
</tr>
<tr>
<td></td>
<td>W-7+BAO+H(_0)</td>
<td>4.34(^{+0.86}_{-0.88})</td>
</tr>
<tr>
<td></td>
<td>W-7+LRG+H(_0)</td>
<td>4.25(^{+0.76}_{-0.80})</td>
</tr>
<tr>
<td></td>
<td>W-7+ACT</td>
<td>5.3 \pm 1.3</td>
</tr>
<tr>
<td></td>
<td>W-7+ACT+BAO+H(_0)</td>
<td>4.56 \pm 0.75</td>
</tr>
<tr>
<td></td>
<td>W-7+SPT</td>
<td>3.85 \pm 0.62</td>
</tr>
<tr>
<td></td>
<td>W-7+SPT+BAO+H(_0)</td>
<td>3.85 \pm 0.42</td>
</tr>
<tr>
<td></td>
<td>W-7+ACT+SP+LRG+H(_0)</td>
<td>4.08(^{+0.71}_{-0.68})</td>
</tr>
<tr>
<td></td>
<td>W-7+ACT+SP+BAO+H(_0)</td>
<td>3.89 \pm 0.41</td>
</tr>
</tbody>
</table>

\[N_{\text{eff}} + f_\nu \]

<table>
<thead>
<tr>
<th>Model</th>
<th>Data</th>
<th>(N_{\text{eff}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N_{\text{eff}} + f_\nu)</td>
<td>W-7+CMB+BAO+H(_0)</td>
<td>4.47(^{+1.82}{-1.74}) (^{+1.22}{-1.25})</td>
</tr>
<tr>
<td></td>
<td>W-7+CMB+LRG+H(_0)</td>
<td>4.8(^{+1.86}_{-1.75})</td>
</tr>
</tbody>
</table>

\[N_{\text{eff}} + \Omega_k \]

<table>
<thead>
<tr>
<th>Model</th>
<th>Data</th>
<th>(N_{\text{eff}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N_{\text{eff}} + \Omega_k)</td>
<td>W-7+BAO+H(_0)</td>
<td>4.61 \pm 0.96</td>
</tr>
<tr>
<td></td>
<td>W-7+ACT+SP+BAO+H(_0)</td>
<td>4.03 \pm 0.45</td>
</tr>
</tbody>
</table>

\[N_{\text{eff}} + \Omega_k + f_\nu \]

<table>
<thead>
<tr>
<th>Model</th>
<th>Data</th>
<th>(N_{\text{eff}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N_{\text{eff}} + \Omega_k + f_\nu)</td>
<td>W-7+ACT+SP+BAO+H(_0)</td>
<td>4.00 \pm 0.43</td>
</tr>
</tbody>
</table>

\[N_{\text{eff}} + \Omega_k + f_\nu + w \]

<table>
<thead>
<tr>
<th>Model</th>
<th>Data</th>
<th>(N_{\text{eff}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N_{\text{eff}} + \Omega_k + f_\nu + w)</td>
<td>W-7+CMB+BAO+H(_0)</td>
<td>3.68(^{+1.90}{-1.84}) (^{+2.02}{-2.02})</td>
</tr>
<tr>
<td></td>
<td>W-7+CMB+LRG+H(_0)</td>
<td>4.8(^{+1.90}{-1.84}) (^{+2.02}{-2.02})</td>
</tr>
</tbody>
</table>

\[N_{\text{eff}} + \Omega_k + f_\nu + w + \eta_\gamma \]

<table>
<thead>
<tr>
<th>Model</th>
<th>Data</th>
<th>(N_{\text{eff}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N_{\text{eff}} + \Omega_k + f_\nu + w + \eta_\gamma)</td>
<td>W-7+CMB+BAO+SN+H(_0)</td>
<td>4.2(^{+1.10}{-0.61})(^{+2.00}{-1.14})</td>
</tr>
<tr>
<td></td>
<td>W-7+CMB+LRG+SN+H(_0)</td>
<td>4.3(^{+1.40}{-0.54})(^{+2.30}{-1.09})</td>
</tr>
</tbody>
</table>

CMB data \(N_{\text{eff}} \) > 3 (2\(\sigma \))
An Unambiguous Proof of $\nu_e \rightarrow \nu_s$ Oscillation

$$\frac{dN}{dR}(R,t) \propto \frac{A(t)}{4\pi R^2} \times \langle \sigma \rangle \times N_p \times 4\pi R^2 \times P_{ee} \left(\frac{\Delta m^2 R}{\langle E \rangle} \right)$$

144Ce (50 kCi – 1 y) Neutrino Generator

Detector Center

Analysis Energy Region
The ILL Neutrino Experiment (1981)

- 1st reactor neutrino program in Europe at the ILL, Research Reactor, Grenoble, 80-81 (TUM)

- Channel: $\text{anti-}\nu_e \rightarrow \text{anti-}\nu_e$

- Detection: $\text{anti-}\nu_e + p \rightarrow e^+ + n$

- Baseline: 8.8 m

- Energy: 1-8 MeV

- Results:
 - 1980: $R = 0.95 \pm 0.1$ \rightarrow consistent with no-oscillation
 - BUT hint of spectrum distortion consistent with eV^2 oscillations (1980...)
 - Epilogue: Reevaluation of the reactor power by +10% in 1995
 \rightarrow observed/predicted measured ratio $R = 0.8 \pm 0.1$ (2σ anomaly)
LSND (Los Alamos)

- 1st results published in PRL 75 (1995)
- Channel: anti-ν_μ \rightarrow anti-ν_e
- Detection: anti-ν_e + ^1H \rightarrow e^+ + n
- Baseline: 30 m
- Energy: 20 < E (MeV) < 200
- Status:
 - anti-ν_e apparition observed
 - not confirmed by Karmen
- Oscillation parameters:
 - Δm^2 >> 0.2 eV^2 >> Δm_{atm}^2 >> Δm_{sol}^2
 - Require a fourth (sterile) neutrino state
Miniboone Neutrino (FNAL)

- 1st results published in PRL 98 (2007)
- Channel: $\nu_\mu \rightarrow \nu_e$
- Detection: $\nu_e n \rightarrow e^+ p$ (CCQE)
- Baseline: 541 m
- Energy:
 - $475 < E$ (MeV) < 3000
 - Oscillation window $E > 475$ MeV
- Status:
 - LSND not confirmed ($E > 475$ MeV)
 - Excess of event at low energy, not consistent with neutrino oscillation (Under investigation)
Miniboone Antineutrino

- 1st results published in PRL 103 (2009)
 - new result in July 2011

- Channel: anti-$\nu_\mu \rightarrow$ anti-ν_e

- Detection: anti-$\nu_e + \text{^1H} \rightarrow \text{e}^+ + \text{n}, \text{FNAL}$

- Baseline: 541 m

- Energy:
 - 200 < E (MeV) < 1250
 - Oscillation window E > 475 MeV

- Status:
 - 2.3σ excess in/out the oscillation window
 - Inconclusive
 - Consistent with LSND
 - But also consistent with no oscillation