

Hadronic Calibration for the ATLAS Jet Trigger

Nuno Anjos, Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa

Ignacio Aracena, Patricia Conde Muíño, Cibran Santamarina Rios, Malachi Schram

Work developed within the ATLAS High Level Trigger Jet Slice Group

Weight ~ 7000 tonnes

1.The ATLAS Experiment ATLAS is a multipurpose experiment designed for the LHC

- ◆ Center of mass energy: 14 TeV
- → Design luminosity: 10³⁴ cm⁻²s⁻¹
- ◆ Bunch crossing rate: 40 MHz
- Collisions per crossing: 25
- **♦** Interaction rate: 1GHz
- **♦** Channels: ~100 million

2.Data challenges

- ➤ High event rates and large event sizes
- ➤ Impossible to store full data stream
- ➤ Use trigger system to filter the events
- Store only the most interesting events

Trigger on Jets:

- Most jets result from trivial processes (QCD)
- Some interesting processes have jets signatures (top physics, SUSY, exotics)
- Main background for jets are jets
- >Jets must be accurately measured
- ➤Procedure must be fast

ATLAS Calorimeter

- Trigger and measure γ , e, τ , **jets**, E_T^{miss}
- renergy scale precision at 1% level good hermeticity

- >Hadronic showers have several components
- Not all energy is sampled
- >Fractions vary with energy
- >Response to electromagnetic and hadronic parts is different: $e/h \sim 1.3 - 1.6$

Regions-of-Interest (RoI) "seeds" from LVL1
Full granularity for all subdetectors
Request event fragments
Fast rejection software
O(40 ms) processing time

Hardware-Based (FPGAs ASICs) Coarse granularity from calorime & muon systems
 2 µs latency (2.5 ms pipelines)

High Level Trigger (HLT)

6.Jet Trigger & Calibration

- > Custom designed processors
- > Sliding window (0.8×0.8 in η,ϕ) with 0.4×0.4 central cluster
- > Searches for a local transverse energy maximum
- > Provides starting point (seed) for LVL2 trigger

LVL2:

- > Data preparation: access data in a Rol around LVL1 seed.
- > Create grid of detector elements, by default each corresponding to a calorimeter cell.
- > Iterative cone algorithm (typically 3 iterat.)
- Calculate energy-weighted η, φ positions
- > Apply calibration:
- $E_{jet} = \sum_{i} (\omega_{EM} \times E_{EM} + \omega_{HAD} \times E_{HAD})_{i}$
- Two sets of weights, one for the electromagnetic energy and one for the hadronic energy
- Weights depend on E_{jet} logarithmically: $\omega_i = a_i + b_i \times log(E_{jet})$ Index i runs over 44 bins of 0.1 units in $\eta \Rightarrow \omega = \omega(E_{jet}, \eta)$
- Weights calculated by minimizing the energy difference w.r.t. Monte Carlo (MC) samples:

- > Offline-like jet reconstruction algorithms
- » Reconstruction in a RoI around LVL2 seed
- Offline calibration available

4. Hadronic Calibration

- >Jets are reconstructed from energy depositions in calorimeter cells
- Multiple reconstruction effects need to be corrected
- Corrections performed through different levels of factorization

longitudinal energy leakage detector signal inefficiencies (dead channels, HV...) pile-up noise from (off-time) bunch crossings electronic noise calo signal definition (clustering, noise suppression) dead material losses (front, cracks, transitions...) detector response characteristics (e/h ≠ 1) jet reconstruction algorithm efficiency / jet reconstruction algorithm efficiency ,

added tracks from in-time (same trigger) pile-up event / added tracks from underlying event / lost soft tracks due to magnetic field / physics reaction of interest (parton level)

► Hadronic calibration corrects the energy scale of calorimeter jets Calibration of trigger jets uses a simple, robust and fast method

9.Summary & conclusions

- The ATLAS LVL2 Trigger uses a fast iterative cone algorithm to reconstruct jets in a RoI around the LVL1 seeds, followed by a simple jet energy calibration algorithm.
- \bullet The calibration weights depend on the jet energy and $\eta,$ and are calculated using Monte Carlo
- ♦ After calibration, the jet energy scale for the LVL2 jets is correct within 2% for all energies.
- Improvements in speed are possible using coarser granularity with the same performance. In-situ calibration with data should be used to test the MC based calibration

7.Jet Energy Scale

Very important to discriminate transverse energy thresholds ⇒ the jet energy scale has to be well measured for a large range of energies, from 20 to 400 GeV:

- With current calibration procedure, the energy scale is correct within 2% for all energies and all
- Small improvement in the resolution when using the calibration
- Resolutions fit to: $\frac{\sigma(E)}{E} = \frac{A(GeV^{1/2})}{\sqrt{E}} \oplus B$

η region	Before calibration		After calibration	
	A	В	A	В
(0.0,0.7)	1.03 ± 0.03	0.059 ± 0.001	0.96 ± 0.02	0.039 ± 0.001
(0.7,1.5)	1.28 ± 0.03	0.064 ± 0.001	1.18 ± 0.03	0.041 ± 0.001
(1.5,2.5)	1.53 ± 0.04	0.046 ± 0.001	1.37 ± 0.03	0.025 ± 0.002
(2.5,3.2)	1.86 ± 0.13	0.063 ± 0.003	1.46 ± 0.08	0.040 ± 0.003

- Improvements in data unpacking speed: use coarse granularity Front-End Board energy sums as grid elements for the e.m. calorimeter, with similar performance.
- ◆Possible improvement in resolution: introduce a dependency of the weights with the fraction of electromagnetic energy, $\omega = \omega(E_{jet}, \eta, f_{EM})$

8.Commissioning with First Data

- In-situ calibration with real data:
 - At LHC energies Monte Carlo models have large uncertainties
 - MC based hadronic calibration must be verified with data
 - ➤ Use energy balance in real data events to perform the calibration
 - ➤Example: Z + jets
- Callenge: apply this procedure within the constraints of the trigger