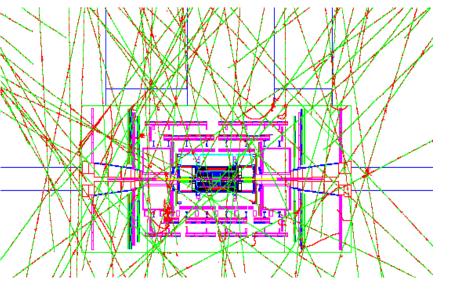

Manuella G. Vincter (Carleton University)
on behalf of the ATLAS Collaboration

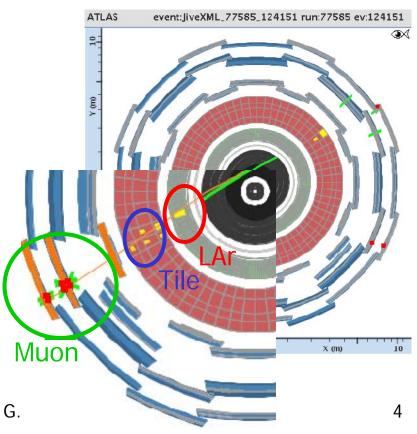
Commissioning of the ATLAS experiment

- ATLAS detector commissioning
 - Why and how!
- Subsystems and their performance
 - Trigger
 - Inner detector
 - Calorimeters
 - Muon system

Commissioning goals

- Basic detector functionality
 - Cabling/mapping
 - Dead/inefficient channels
 - noise
- Readout/trigger chain
 - full Level-1/TDAQ/online/offline chain
 - Interfaces between e.g. DAQ, detector control system, databases
- Signal
 - Signal reconstruction
 - Timing
 - Alignment
- Initial calibration constants

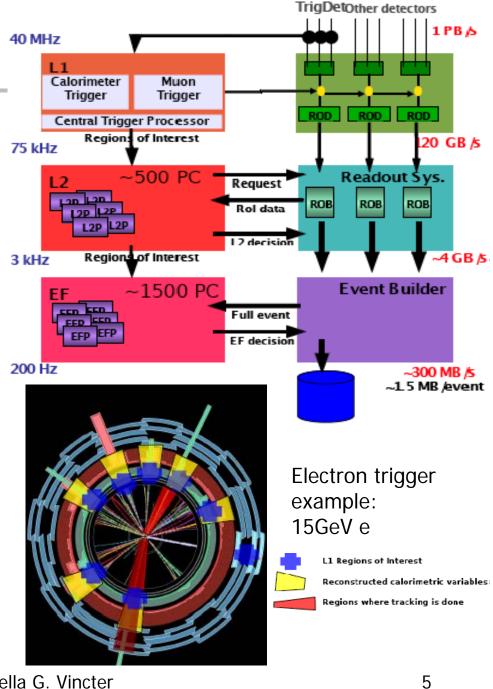




Commissioning runs

In-situ detector commissioning since 2005

- System-specific stand-alone calibration runs
 - Noise measurements
 - Calibration pulses
- Stand-alone cosmics runs
- Combined cosmics runs
 - Trigger at Level 1 with:
 - Calorimeters (LAr&Tile)
 - Muon system (RPC&TGC)
 - Minimum bias scintillators
 - Detector subsystems have joined combined runs as they came online


Level-1

- Custom-made electronics
- Reduced granularity info from calorimeter and muon systems
- Signatures from high p_T muons, γ/e , jets, τ , events with large E_T^{miss}

High-Level Trigger

- Software and mainly commercially available equipment
- Level-2: seeded by Regions of Interest (RoI) provided by Level-1, full detector granularity in RoI (tracking information used)
- Event Filter: uses offline analysis procedures to further select events, potential full access to event

Event rate reduced 40MHz ⇒200Hz

Calo Mu

Inner detector

Inner detector system

High-resolution pattern recognition

Momentum and vertex measurements

Electron identification: E=0.5-150GeV

2T solenoidal field

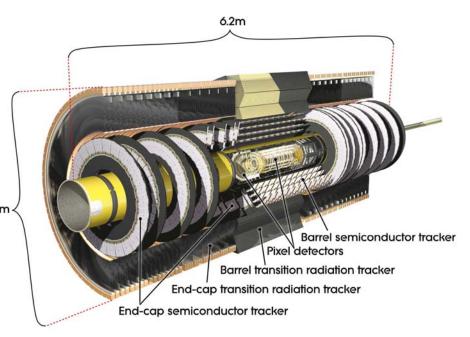
Silicon pixel

Discrete space points, 3 layers, |η|<2.5

Layer closest to interaction: 5cm

80.4 million readout channels!

Silicon microstrip (SCT)

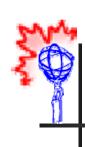

 Stereo pairs, 8 layers (4 space points), |η|<2.5

6.3 million readout channels

Straw tube transition radiation tracker (TRT)

Typically 36 hits per track, |η|<2.0

351k readout channels

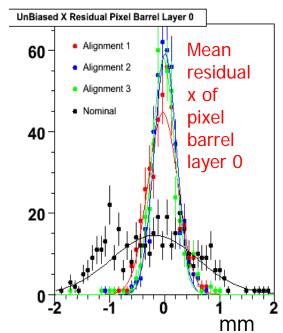

Goals:

Instrinsic accuracy	R- φ	R or z
Pixel	10 μm	115 μm
SCT	17 μm	580 μm
TRT	130 μm	

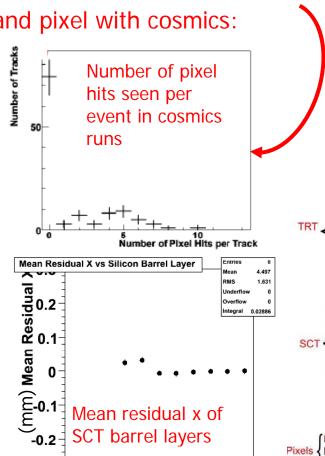
• $\sigma/p_T \sim 0.05\% p_T \oplus 1\%$

2008 commissioning:

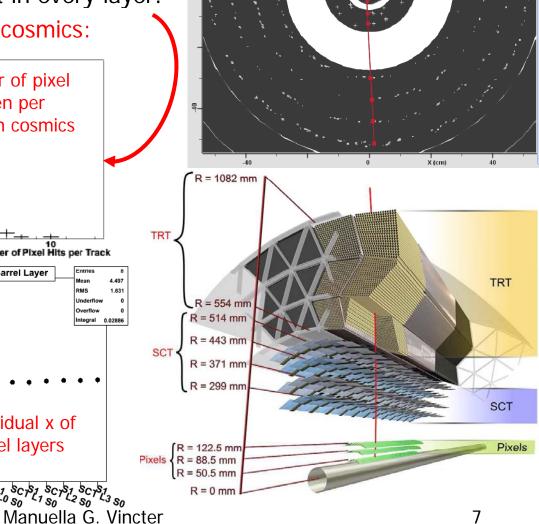
 2.5% lost due to cooling leaks and heater problems in endcap (much can be recovered in shutdown)



Silicon ID with cosmics events

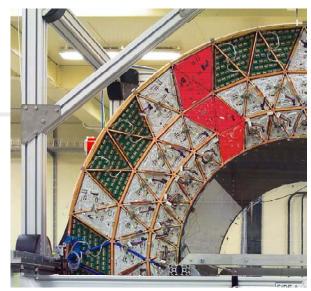

First cosmic runs with pixels: mid-September!

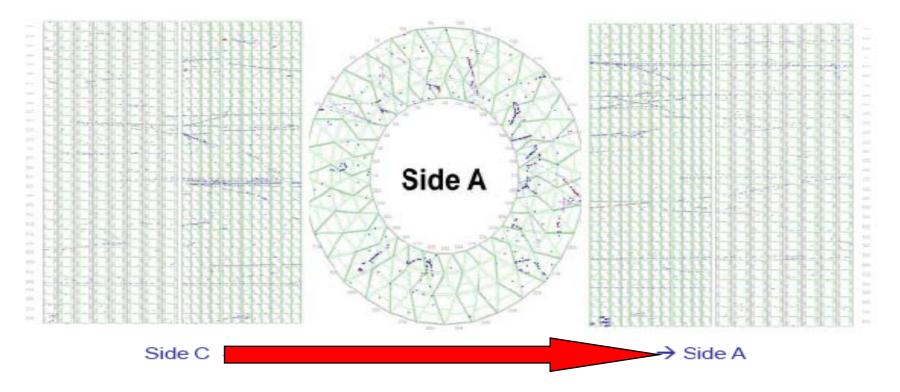
7 pixel hits and 16 SCT hits: one hit in every layer!


Initial alignment of SCT and pixel with cosmics:

See talk of Regina Moles Valls this afternoon!

Pix Pix Pix \$57510 50751 507512 507




September 2008

Inner detector and first LHC beam

- Beam halo event in TRT with first LHC beam
 - Magnet off
 - Beam from left to right
 - TRT hits in barrel and endcap!

Sampling calorimetry

LAr electromagnetic

end-cap (EMEC)

Electromagnetic: $|\eta| < 3.2$

- Lead-liquid argon, 3 sampling depths in precision region $|\eta|$ < 2.5
- Presampler $|\eta| < 1.8$
- ~175k channels

Hadronic:

- Barrel: steel-scintillating tiles |η|<1.7, Goals:
 3 sampling depths
- ~10k readout channels
- Endcaps: copper-liquid Ar $1.5 < |\eta| < 3.2$, 4 sampling depths
- ~6k channels

Forward: $3.1 < |\eta| < 4.9$

- (1 copper+2 tungsten)-liquid Ar depths for electromagnetic and hadronic measurements
- ~3.5k channels

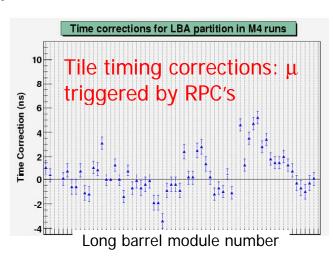
LAr electromagnetic

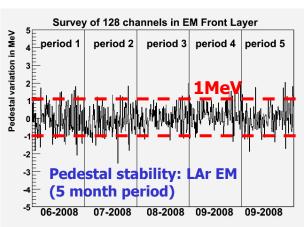
- fine granularity in overlap region with inner detector for precision measurements of e/γ
 - σ/E ~ 10%/√E ⊕ 0.7%
 - Linearity to ~0.1%

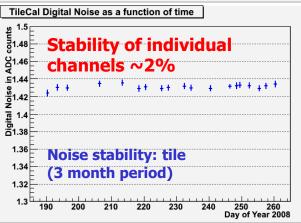
Tile barrel

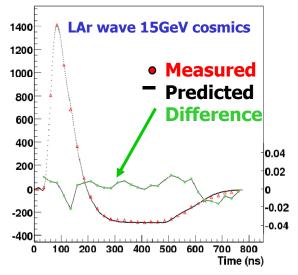
Tile extended barrel

- Coarser granularity in the other regions sufficient for jet reconstruction and E_T^{miss} measurements
 - $\sigma/E \sim 50\%/\sqrt{E} \oplus 3\%$ (barrel/endcap)
 - $\sigma/E \sim 100\%/\sqrt{E} \oplus 10\%$ (forward)

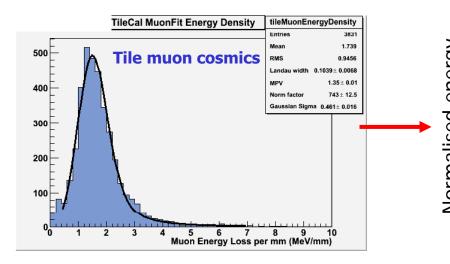

LAr forward (FCal)

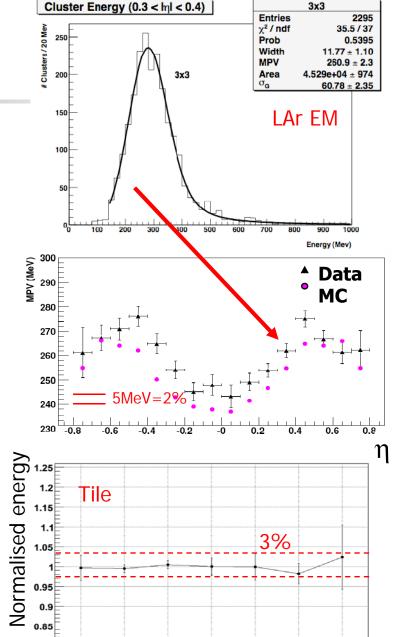



Calorimeter performance


Calorimeter commissioning: 3 years!

- "Dead" channels:
 - EM: ~0.01% (+0.5%, most can be recovered at next shutdown via frontend board replacement)
 - HEC: ~0.1% (+LVPS impacting ¼ of an endcap, to be resolved next shutdown)
 - FCal: none
 - Tile: ~1.5% (all should be recoverable next shutdown!)
- LAr: Some channels require special corrections e.g. high voltage
- Tile: Cs source used to set HV and equalise PMT gains to <1%</p>
- Tile timing corrections: can intercalibrate to 0.5ns
- Effort is now more focused on performance
 - Long term stability
 - Prediction of the signal
 - Calibration constants

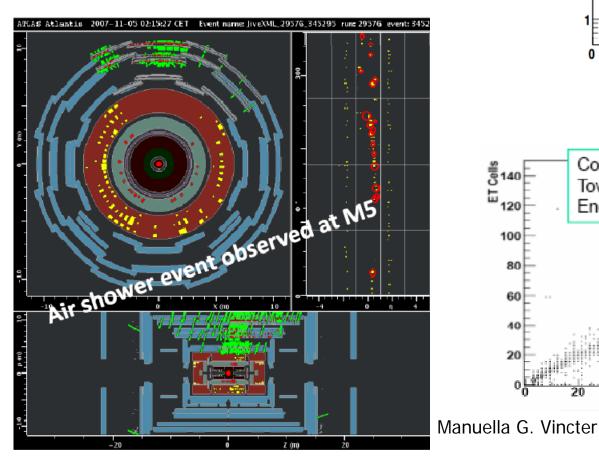


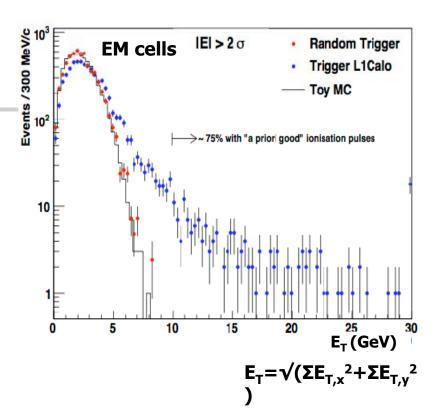


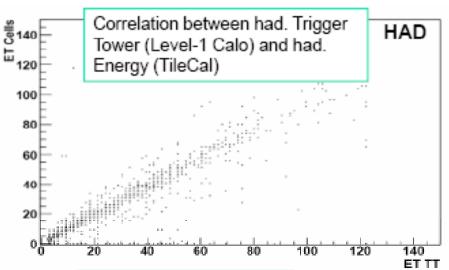
Calorimeter performance

- Energy reconstruction
 - LAr EM: Reconstruct E with 3x3 calorimeter cells, comparison to Landau
 - energy η dependence agreement, though there is a 5% systematic uncertainty on the MC prediction
 - Tile: energy deposited by μ vs. η, normalised by distance traveled in tile
 - energy scale&uniformity tested to 2-3%

0.6


0.1

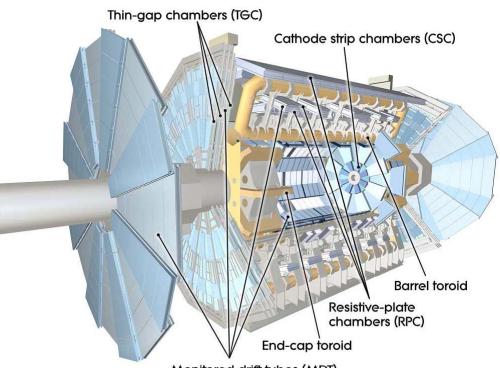

0.2



Calo/trigger performance

- Correlation between energy as measured in calorimeter and as seen in L1 trigger
- Impact of air showers as sources of non-IP jets: reduced though timing cuts

12


Muon spectrometer

Air-core toroid magnet system

- Generate magnetic field
- Barrel: $\sim 1.5-5.5$ Tm in $0 < |\eta| < 1.4$
- Endcaps: $\sim 1-7.5$ Tm in $1.6 < |\eta| < 2.7$

Precision tracking chambers

- Track coordinate in bending plane
- 3 barrel layers, 3 endcap wheels
- ~370k readout channels
- Monitored Drift Tubes (MDT)
 - $|\eta|$ < 2.7 (innermost layer $|\eta|$ < 2.0)
- Cathode Strip Chambers (CSC)
 - innermost layer 2.0<|η|<2.7

Monitored drift tubes (MDT)

Trigger chambers

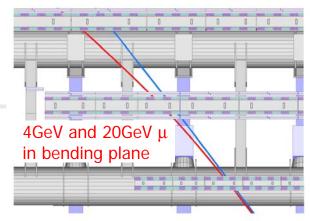
- Bunch-crossing ID, triggering, coordinate orthogonal to tracking measurement
- ~680k readout channels
- Resistive Plate Chambers (RPC)
 - $|\eta| < 1.05$
 - 3 double layers
- Thin Gap Chambers (TGC)
 - $1.05 < |\eta| < 2.7$ (2.4 for triggering)
 - 4 wheels

Muon status and performance

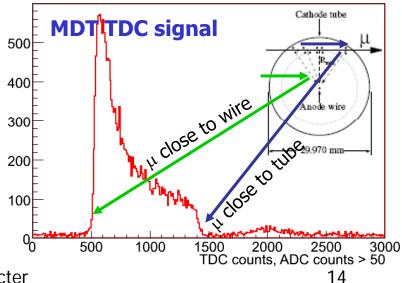
Goal: stand-alone p_T resolution ~10% for 1TeV tracks

sagitta along the beam axis of ~500μm for 5m track, to be measured with resolution of 50μm

Status: All chambers installed&services connected


Noise rates are under control

Under investigation


Integrated into the DAQ

- MDT tested to 100kHz, TGC and RPC to 40kHz
- CSC: rate issues related to programming of FPGA

•	10			9										
(Q	9	C-noH-W/I	hool C	A_TET	, A C	. '			1			'	' '	<u>'</u>
Noise (ADC)	E(Small Wi Precision	STATE	att	sed (<i>P</i> sst	en-C	7						=
ž			• • • •	<u> </u>	• •	• •		/ 1			Si	ırfa	ice	. 🗍
	7	Fil	ters	- , III	1						- Sur - Tree	face it Si l		' <u> </u>
	6	miss	ing o	n 📗				1			141	"SI	Lu	1
	5		ables		$ \cdot $	-li			l					1
	4	LV C	able	\	$ _{i}$				Ш.	ЕΠ	i			: =
	3	والوافيا أأثر أسواة	المذارا			وأدأد	ساوانا			باللة		أدال	البحل	iī
	2	المدارس العراثات			on ap		ورواياته		ונייניין א	Market .	ووالمالك	A selection of the	A STATE OF	. M <u>.4₫</u>
	1 = -	C02 C03				C00	600	640	644	640	642	644	645	 C16=
	0	C02 C03	C04 C0	5 C06	C07	C08 	C09	C10	C11 	C12	C13	C14 0	C15	12 ×10 ³
	U	2		4		6			ŏ		1	U	Cł	12 nannel

Chamber resolution	z/R	ф	time
MDT	35 μm (z)		
CSC	40 μm (R)	5 mm	7 ns
RPC	10 mm (z)	10 mm	1.5 ns
TGC	2-6 mm (R)	3-7 mm	4 ns

September 2008 Manuella G. Vincter

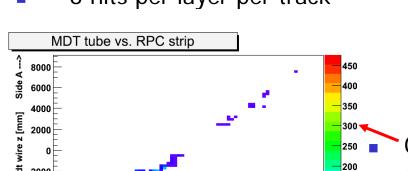
-4000

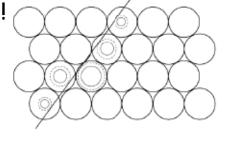
-6000 -8000

-8000 -6000

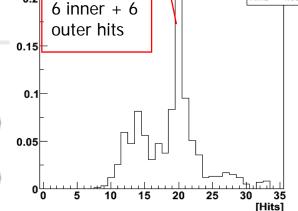
-4000

-2000


Muon performance with cosmics


150

100


MDT sees cosmic muon tracks very well!

~6 hits per layer per track

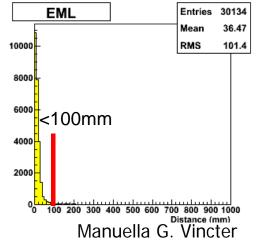
 $r_i = r(\tau_i + t_{offset})$

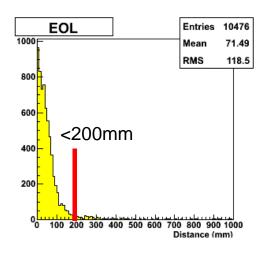
18.68

4.607

Mean

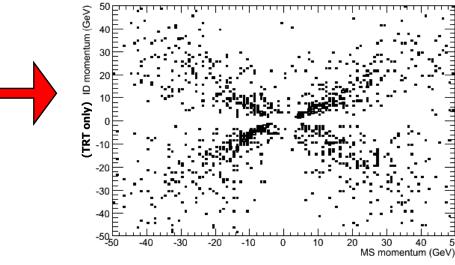
RMS

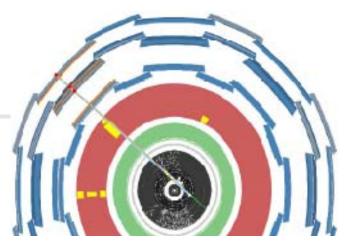

Number of MDT hits per muontrack

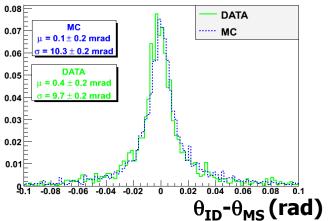

8 middle +

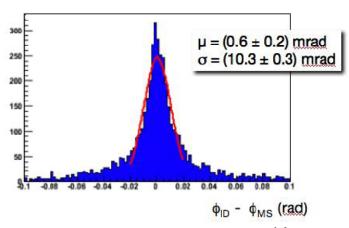
Good correlation between MDT and RPC
Distance between MDT centre & projection by TGC
(inner,middle,outer layers)

0 2000 4000 6000 8000


Joint ID-muon performance


Early cosmic rays for ID in March 2008:

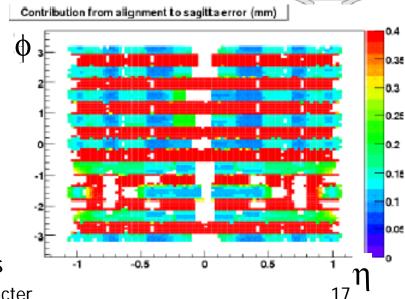

- difference in track (θ,φ) using ID (SCT+TRT) and muon (MDT) hits
- Resolution at the 10mrad level in θ,φ

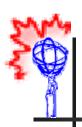

August 2008 cosmics run with magnetic field "on":

- Correlation between momentum in ID (TRT only) and muon spectrometer
- Note: muon charge wrong for downward tracks in upper detector

September 2008

Manuella G. Vincter

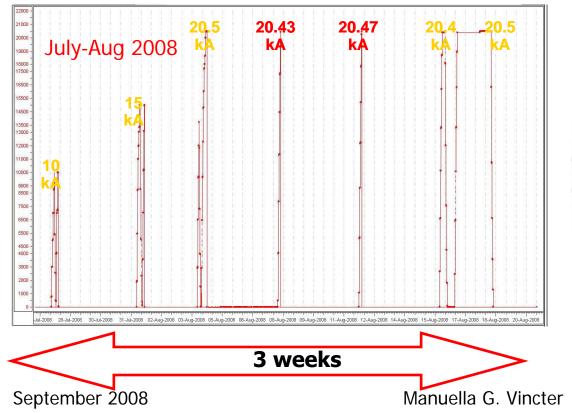


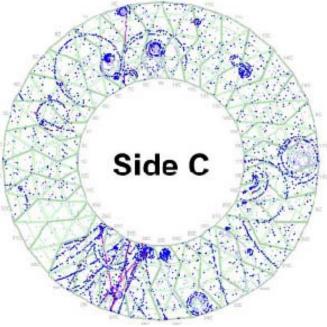

Muon alignment

- Goal: 10% accuracy for a 1TeV muon track requires a resolution on the reconstructed sagitta of 50μm. Intrinsic resolution of the muon chambers: ~35μm
 - relative alignment of the 3 chambers per towers should be known to 30μm

 For needed sagitta accuracy: track-based alignment algorithms used in combination with optical system (~12000 optical sensors)

- Geometer survey: positioning accuracy of the 1200 MDT chambers: ~5mm
- Barrel alignment fit in sector 5: precision of 200-300μm (absolute mode, without straight tracks)
 - best that could be achieved is 100-200μm
- Monte Carlo of optical alignment only where e.g. sector 5 alignment error is propagated to muon sagitta
 - 50μm in the odd sectors
 - 400μm in the even ones
 - Track alignment with curved tracks needed to connect the even sectors to the odd ones





Magnet runs

- Barrel and endcap toroid magnets (4T, 20.5kA) have been run at full current, in combination with the solenoid magnet (2T, 7.7kA)
- Impact of barrel toroid field on endcap calorimeter low voltage power supplies solved with extra shielding

First TRT cosmic events with solenoid "on"

ATLAS commissioning: summary

- Already 3 years of in-situ commissioning!
 - Essentially the entire detector has been fully tested (in some cases, multiple times!) with calibration runs
 - Most subsystems have joined the ATLAS combined cosmics runs, with the pixels joining just 2 weeks ago!
 - Have a good overview of the status of the subsystems for early running
 - Some intervention required during 2008-9 winter shutdown, which will give us back most of the ailing channels (e.g. some of those due to cooling leaks, LVPS, frontend readout problems)
 - Inaccessible problems at a very low level
 - Establish the initial calibration constants for early running
 - Have already some preliminary alignments, energy scale calibrations, timing from cosmics (but nothing beats real collision data!)
- Near future activities centre on further commissioning the detector with cosmics, in preparation for first collisions next spring!

September 2008 Manuella G. Vincter 19