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Commissioning of the ATLAS experiment

s ATLAS detector e
commissioning — T

= Why and how!
= Subsystems and their
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= Inner detector
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E? Commissioning goals
Basic detector functionality

= Cabling/mapping

= Dead/inefficient channels

= noise

Readout/trigger chain

= full Level-1/TDAQ/online/offline chain

= Interfaces between e.g. DAQ,
detector control system, databases

ehysics,

IP/vertex resolution
Momentum measurement
EM energy scale

Slgnal Tnt rarAnctriintinn
; ] JCL ITCLUUIIOLI ULLIVUILI
] Slgnal reconstruction
o Jet energy scale
= TIming

miss
ET

= Alignment
Initial calibration constants
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In-situ detector commissioning since 2005
= System-specific stand-alone calibration runs _
= Noise measurements A -
=« Calibration pulses NZT I IV AN
= Stand-alone cosmics runs ATLAS  eventjiveXML 77585 124151 run77565 evi124151
= Combined cosmics runs ' >
= Trigger at Level 1 with:
= Calorimeters (LAr&Tile)
= Muon system (RPC&TGC)
= Minimum bias scintillators

= Detector subsystems have joined
combined runs as they came online

Commissioning runs

7

=
taiz
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Level-1
s Custom-made electronics

= Reduced granularity info from
calorimeter and muon systems

Trigger

= Signatures from high p; muons, y/e,

jets, T, events with large E,™miss
High-Level Trigger

= Software and mainly commercially
available equipment

= Level-2: seeded by Regions of
interest (Roi) provided by Levei-1,
full detector granularity in Rol
(tracking information used)

= Event Filter: uses offline analysis
procedures to further select events,
potential full access to event

Event rate reduced 40MHz =200Hz

September 2008

Calo Mu
TrigDetwther detectors

ﬁ ‘ HlFE,&

40 MHz

Calorimeter Muon
Trigger Trigger

Central Trigger Processor
Regiony of Interest
5 kHz

3 kHz i ~4GB .
200 Hz

Electron trigger
A4\ example:
e el Y 15GeV e

- “*---_, l l

"'\- . L1 Regions of Interest

3 Fr J i' Reconstructed calerimetric variables;
o ‘ Regions where tracking is done
s
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Innerdetector .. i

Inner detector system
= High-resolution pattern recognition
= Momentum and vertex measurements
= Electron identification: E=0.5-150GeV
= 2T solenoidal field
= Silicon pixel
= Discrete space points, 3 layers, [n|<2.5  Goals:

IB*X Barrel semiconductor fracker
Pixel detectors

o Barrel fransition radiation tracker
J ' End-cap transition radiation fracker

" End-cap semiconductor tracker

= Layer closest to interaction: 5cm Instrinsic R- ¢ Rorz
= 80.4 million readout channels! accuracy
= Silicon microstrip (SCT) Pixel Oum | Ho5um
= Stereo pairs, 8 layers (4 space points), | L S
Inl<2.5 TRT 130 pum
= 6.3 million readout channels = o/p; — 0.05% p; @ 1%

= Straw tube transition radiation tracker (TRT)
= Typically 36 hits per track, |n|<2.0
= 351k readout channels

2008 commissioning:

= 2.5% lost due to cooling leaks and
heater problems in endcap (much
can be recovered in shutdown)
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Silicon ID with cosmics events

First cosmic runs with pixels: mid-September!
= 7 pixel hits and 16 SCT hits: one hit in every layer!
Initial alignment of SCT and pixel with cosmics:

UnBiased X Residual Pixel Barrel Layer 0 | 'E L .
: : _|_ Number of pixel
60 "Moo <l Mean 5| hits seen per
1« Memmenz ¥ residual E event in cosmics
# Alignment 3 X Of 50— runs
« Nominal | . i
40 pIXEI ("R =1082 mm
l _|_F|_
nl"‘_l.__'_. |-!_ PR . TRT<
B a B 10
Number of Pixel Hits per Track
20_ ean Residual X vs Silicon Barrel Layer Entries 8
- IRmpemeStentian e w1
E Underflow [1] LR = 554 mm
] 50.2- g 130000 (R=514mm
[/;]
i i w =
0 b & 0.1 sard R =443 mm |
-2 2 £ ] - R=371mm
mm < 0 L | R =299 mm
=l SCT
E'M; Mean residual x of
See talk of Regina Moles ~0.23 SCT barrel layers e {;:;gzﬁ.s mm Pixels
. i IXels = 2 mm
Valls this afternoon! 03 R =505 |
T Pl B BT, SO PG Y R=0mm
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= Beam halo event in TRT with first LHC beam
= Magnet off
= Beam from left to right
= TRT hits in barrel and endcap!

Inner detector and first LHC beam ©

Side C I > icie A
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Sampling calorimetry

LAr hadronic
end-cap (HEC)

Tile barrel Tile extended barrel
E — = — :

LAr eleciromagnetic

Electromagnetic: |n|<3.2 Lot sachomanetc SRS

= Lead-liquid argon, 3 sampling depths
In precision region |n|<2.5

= Presampler |n|<1.8

®» ~175k channels

LAr electromagnetic
barrel

Hadronic: LAr forward (FCal)
= Barrel: steel-scintillating tiles |n|<1.7, Goals: -
3 sampling depths = fine granularity in overlap region with
®» ~10k readout channels inner detector for precision
= Endcaps: copper-liquid Ar measurements of e/y
1.5<|n|<3.2, 4 sampling depths = o/E ~ 10%/NE ® 0.7%
» —~6k channels = Linearity to ~0.1%
Forward: 3.1<|n|<4.9 = Coarser granularity in the other regions
= (1 copper+2 tungsten)-liquid Ar depths  Sufficient for jet reconstruction and E;™**
for electromagnetic and hadronic measurements
measurements = O/E ~ 50%/\E ® 3% (barrel/endcap)
®» ~3.5k channels = O/E ~ 100%/NE @ 10% (forward)
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Calorimeter performance

Calorimeter commissioning: 3 years!

“Dead” channels:

= EM: ~0.01% (+0.5%, most can be recovered at next
shutdown via frontend board replacement)

= HEC: ~0.1% (+LVPS impacting ¥4 of an endcap, to be

resolved next shutdown)

= FCal: none

= Tile: ~1.5% (all should be recoverable next shutdown!)
LAr: Some channels require special corrections e.g. high voltage
Tile: Cs source used to set HV and equalise PMT gains to <1%
Tile timing corrections: can intercalibrate to 0.5ns
Effort is now more focused on performance

= Long term stability
= Prediction of the signal
= Calibration constants

September 2008
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Calorimeter performance

Energy reconstruction

LAr EM: Reconstruct E with 3x3 calorimeter
cells, comparison to Landau

®» energy 1 dependence agreement, though . \ Frero e
there is a 5% systematic uncertainty on the 2., , Data
MC prediction 2 oo T ~MC

= I 1

- . . - - ]’

g T|Ie._energy dep05|te_d b_y 1 vs. m, normalised i |+ . +I [
by distance traveled in tile mT SIS o i
» energy scale&uniformity tested to 2-3% pofe. —— 5Mev:2%+ : + .
TileCal MuonFit Energy Density | tileMuonEnergyDensity 230 j-ol-al | I-U‘-sl I ‘-°|-4| | I-0|-2I I ‘-|0| | |0.|2‘ I ‘0.|4| ‘ 'o.le‘ I ‘0.|8|

- - > n
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- e e
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|_Cluster Energy (0.3 <l <0.4) | 3x3

Entries 2295
é = %2/ ndf 35.5/37
5 20 J Prob 0.5335
= Width 11.77 = 1.10
k: MPV 260.9 =2.3
3 2001 I3 Area 4.529e+04 + 974
= g 60.78 = 2.35

150—
LAr EM

100—
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i | Calo/trigger performance f E‘v.. e
%10’ \5"%
ﬁ ? o Hnrs% with "a priori good" ionisation pulses
= Correlation between energy as measured in i +*+*++++ + 1
calorimeter and as seen in L1 trigger ol HU
= Impact of air showers as sources of non-IP - | HWH M
jets: reduced though timing cuts ! ’ ‘ ’ ’ ‘H H‘
e, LT o
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)
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100]
e T
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Thin-gap chambers (TE&C)
5 Cathode strip chambers (CSC)

? Muon spectrometer
Air-core toroid magnet system N
= Generate magnetic field ,

= Barrel: ~1.5-5.5 Tm in 0<|n|<1.4
= Endcaps: ~1-7.5 Tm in 1.6<|n|<2.7

A Dol o
T fwgpa\ i\ o TG -
= [ % 2 A
i i A A
\ L B V5, - \
. N &40 i
y &
b AR
il W -
4 _ | Mgl
o |

o

] ” \\
= JRll
| & \

Barrel toroid

1 Resistive-plate
chambers (RPC)

End-cap toroid

Monitored drift tubes (MDT)
Precision tracking chambers Trigger chambers
= Track coordinate in bending plane = Bunch-crossing ID, triggering,
N 3 end heel coordinate orthogonal to tracking
= 3 barrel layers, 3 endcap wheels measurement
= ~370k readout channels = ~680k readout channels
= Monitored Drift Tubes (MDT) m Resistive Plate Chambers (RPC)
= |n|<2.7 (innermost layer |n|<2.0) = |n|<1.05
= Cathode Strip Chambers (CSC) = 3 double layers
= innermost layer 2.0<|n|<2.7 = Thin Gap Chambers (TGC)
= 1.05<|n|<2.7 (2.4 for triggering)
= 4 wheels
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Goal: stand-alone p; resolution ~10% for 1TeV tracks

= sagitta along the beam axis of ~500um for 5m
track, to be measured with resolution of 50um

Status: All chambers installed&services connected\4

Noise rates are under control

Integrated into the DAQ

= MDT tested to 100kHz, TGC and RPC to 40kHz

m CSC: rate issues related to programming of FPGA

Muon status and performance

4GeV and 20GeV 1 N\
in bendlng plane

Chamber z/R () time
resolution

MDT 35 um (2) -- --
CSC 40 um (R) 5 mm 7ns
RPC 10 mm (2) 10 mm 1.5ns
TGC 2-6 mm (R) | 3-7 mm 4 ns

®» Under investigation " MDTITDC sianal “““*[‘“”“
- sl ical
o 10— — T 500
< 9 WheeIC LAS C
i CH-SR a”&losv\fh@el e
, —Suface .
Filters s -
6 o Imsitu 3001
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A LV cables " NI 2000
Mﬂlnw VLU Lo : = -
# . A - 100F-
1 ! ' -
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Early cosmic rays for ID in March 2008:

= difference in track (6,¢) using ID (SCT+TRT) and
muon (MDT) hits

Joint ID-muon performance

= Resolution at the 10mrad level in 6,¢ noef | oama
1 1 H H 0-07:_ p=0. iMc mra S P N mc

August 2008 cosmics run with magnetic field “on”: cooblastos-ormea|

= Correlation between momentum in ID (TRT only) e

and muon spectrometer ok

= Note: muon charge wrong for downward tracks in ozt
upper detector
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= Goal: 10% accuracy for a 1TeV muon track requires a resolution on the
reconstructed sagitta of 50um. Intrinsic resolution of the muon chambers: ~35um

» relative alignment of the 3 chambers per towers should be known to 30um

= For needed sagitta accuracy: track-based alignment algorithms used in e
combination with optical system (~12000 optical sensors) e
= Geometer survey: positioning accuracy of the
1200 MDT chambers: ~5mm

= Barrel alignment fit in sector 5: precision of
200-300um (absolute mode, without straight Conblbetion rom et b agltnarror ] | =
tracks) N

= best that could be achieved is 100-200um ¥

= Monte Carlo of optical alignment only where
e.g. sector 5 alignment error is propagated to !
muon sagitta

= 50um in the odd sectors 1 -
= 400um in the even ones 4 _ .
® Track alignment with curved tracks needed =~ 3 ~7 = . .

n

Muon alignment

018

to connect the even sectors to the odd ones T Tes e Tes
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= Barrel and endcap toroid magnets (4T, 20.5kA) have
been run at full current, in combination with the

solenoid magnet (2T, 7.7kA)

= Impact of barrel toroid field on endcap calorimeter low
voltage power supplies solved with extra shielding

Magnet runs i &

2043 2047 RES s AR

20000 - ﬂ D H ; o T { -ﬁ'
19000; July-Aug 2008 j k/\ k/\ i ok : ke ;l:::-"-.-l‘:_--'-. 7 1\, _-._ =y [ £
18000 -| Pt TR} = Mt |-'_.I -I"_" .I-- 3
17500 - < % :E} ” I}_-_ S

Sl
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First TRT éosmic events

. with solenoid “on”
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m Already 3 years of in-situ commissioning!

= Essentially the entire detector has been fully tested (in some cases, multiple
times!) with calibration runs

= Most subsystems have joined the ATLAS combined cosmics runs, with the
pixels joining just 2 weeks ago!
= Have a good overview of the status of the subsystems for early running

= Some intervention required during 2008-9 winter shutdown, which will give
us back most of the ailing channels (e.g. some of those due to cooling leaks,
LVPS, frontend readout problems)

= Inaccessible problems at a very low level
= Establish the initial calibration constants for early running

= Have already some preliminary alignments, energy scale calibrations, timing
from cosmics (but nothing beats real collision data!)

= Near future activities centre on further commissioning the detector with cosmics,
In preparation for first collisions next spring!

ATLAS commissioning: summary
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