The discovery reach for mini-black holes with the ATLAS Detector at the LHC

Michiru Kaneda
 University of Tokyo

On behalf of the ATLAS Collaboration

TeV-Scale Gravity

$=$ Hierarchy problem, one of the big unsolved problems in 20 century
$=$ The large deviation between electroweak scale and the Planck scale: $\mathrm{M}_{\mathrm{Pl}}\left(10^{19} \mathrm{GeV}\right) \gg \mathrm{M}_{\mathrm{W}}\left(10^{2} \mathrm{GeV}\right)$

- Extra dimensions
= One of the solutions of the hierarchy problem
$=$ Only gravitational field is allowed to expand into the extra dimensions
= "The Fundamental" d-dimensional Planck scale, M_{D} is , in effect, TeV scale
= Some approach:
$=$ Additional large flat dimensions
= Arkani-Hamed, Dimopoulos and Dvali (ADD)
$=$ A single warped extra dimension
= Randall and Sundrum (RS)

Black Hole

$=$ Production
$=$ If the particles(with center of mass energy $=\hat{\mathbf{s}}$) collide with the impact parameter b which is smaller than 2 times Schwarschild radius, $\mathrm{r}_{\mathrm{h}} \sim \hat{\mathrm{s}} / \mathrm{M}_{\mathrm{D}}{ }^{2}$, Black Hole will be formed
$=$ If $\mathrm{M}_{\mathrm{D}} \sim \mathrm{TeV}$, LHC can generate TeV -scale mini-black hole!
$=$ Decay
$=$ Such a mini-black hole decays in $\sim 10^{-26}$ s
= There are 4 decay phase

- The balding phase: Loose the "hair" (multipole moment)
$=$ Spin-down phase: Loose angular momentum by emitting high-spin state particles
$=$ Schwarzschild phase: Hawking evaporation
$\nu=$ Planck phase: $M_{B H} \sim M_{D}$, need quantum gravity, difficult to calculate
The smaller M_{BH} becomes, The higher Hawking Temperature becomes

$$
T_{H}=M_{D}\left[\frac{M_{D}}{M_{B H}}\left(\frac{n+2}{8 \Gamma((n+3) / 2)}\right)\right]^{\frac{2}{1+n}}
$$

Working Model

= Black Hole Event Generator: CHARYBDIS:

= Based on ADD model
= Parton level xsec is calculated with assumption of semi-classical model (valid only when $\mathrm{M}_{\mathrm{BH}} \gg \mathrm{M}_{\mathrm{D}}$)

$$
\hat{\sigma}_{a b \rightarrow B H}=\pi r_{h}^{2} \quad r_{h}=\frac{1}{\sqrt{\pi} M_{D}}\left[\frac{M_{B H}}{M_{D}}\left(\frac{8 \Gamma((n+3) / 2)}{n+2}\right)\right]^{\frac{1}{1+n}}
$$

= Ignore balding and spin-down phase

- No graviton emission
= Available grey-body factor
$=$ Just a N-body decay at Plank Phase
$=$ Main input parameters:
$=$ The Fundamental Plank Scale: M_{D}
$=$ Number of extra dimensions: n
$=$ Minimum BH Mass to be produced

Cross section of Black Hole in 14 TeV pp collision $\left(\mathrm{M}_{\mathrm{BH}} \gg \mathrm{M}_{\mathrm{D}}\right)$

Black Hole Event

ATLAS Event display: Simulation of Black Hole event

- Large cross section (~ 1 event/s for TeV BH)
$=$ Very crowded events
$=$ High energy particles
$=$ Most of events have leptons
$=$ Easy to trigger

a) CHARYBDIS: $n=2, m>5 \mathrm{TeV}$			
Trigger	L1	L2	EF
j 100	1	1	1
j 400	0.997	0.997	0.997
3 j 100	0.998	0.998	0.998
3 j 250	0.972	0.971	0.971
4 j 100	0.985	0.985	0.985
4 j 250	0.865	0.862	0.862

Efficiency for jet trigger

Decay Particles from Black Hole

Pdg Id of emitted particles from BH
$=$ Emit very high P_{T} particles
$=$ Higher n shows higher P_{T} because
Hawking temperature is higher

$$
\frac{d N}{d E} \propto \frac{\left(E / T_{H}\right)^{2}}{\exp \left(E / T_{H}\right)+c}<\text { Hawking Temperature }
$$

$$
T_{H}=M_{P}\left[\frac{M_{D}}{M_{B H}}\left(\frac{n+2}{8 \Gamma((n+3) / 2)}\right)\right]^{\frac{2}{1+n}}
$$

$=$ Particles are emitted by Hawking radiation

- Emission probability depends on degree of freedom of quantum variables
- A break of perfect democratic decay comes from conservation of charge, color, etc.

P_{T} distribution of particles from BH

$\underline{P}_{\underline{T}}$ of Particles observed in Events

$=$ Even 4th leading particle has very large P_{T}
$=\operatorname{Sum} \mathrm{P}_{\mathrm{T}}$:
$=$ A scalar sum of P_{T} of all particles in the event

Multiplicity and Circularity

Particle Multiplicity of BH with different parameters

Circularity of Black Holes
$=$ Higher n shows lower multiplicity $=$ Hawking temperature is higher $=$ One particle carries larger energy
$=$ Circularity, Sphericity or Thrust are also the candidates of event selections $=$ But they strongly depend on multiplicity

Circularity, compared with backgrounds

Missing E_{T}

Missing E_{T} (with event selection: $\mathrm{SumP}_{\mathrm{T}}>2500 \mathrm{GeV}$)
$=$ Black Hole emits also high P_{T} neutrinos
$=$ Large missing E_{T} source
= Even compared to SUSY signal, BH has a long tail in high MET region
= Charybdis can not emit graviton and not emit into bulk

- They may be also large missing E_{T} source
$=$ New generator which can treat such features are being investigating

Event Selection 1:Sum P ${ }_{T}$

$=$ Sum P_{T} selection
$=$ Sum $\mathrm{P}_{\mathrm{T}}>2.5 \mathrm{TeV}$
$=$ Require at least 1 of the 50 GeV lepton
$=$ Not dependent on particle multiplicity
$=$ Black Hole Mass is reconstructed from particles(only high $\mathrm{P}_{\mathrm{T}},>15 \mathrm{GeV}$ for e, μ, γ and $>20 \mathrm{GeV}$ for jet) in the event
$=$ Missing ET is also included as a particle of $\mathrm{P}_{\mathrm{Z}}=0$

Event Efficiency: Sum P_{T} selection				
Dataset	Before selection (fb)	$\sum\left\|p_{T}\right\|>2.5 \mathrm{TeV}$	After requiring a lepton	acceptance
	(fb)	(fb)		
$n=2, m>5 \mathrm{TeV}$	$40.7 \pm 0.1 \times 10^{3}$	$39.2 \pm 0.3 \times 10^{3}$	$18.6 \pm 0.2 \times 10^{3}$	0.46
$n=4, m>5 \mathrm{TeV}$	$24.3 \pm 0.1 \times 10^{3}$	$22.6 \pm 0.2 \times 10^{3}$	6668 ± 83	0.27
$n=7, m>5 \mathrm{TeV}$	$22.3 \pm 0.1 \times 10^{3}$	$20.1 \pm 0.2 \times 10^{3}$	3574 ± 60	0.17
$n=2, m>8 \mathrm{TeV}$	338.2 ± 1	338.1 ± 2.5	212 ± 16	0.63
$t \bar{t}$	$833 \pm 100 \times 10^{3}$	$23.6_{-6.2}^{+12.2}$	$8.2_{-2.43}^{+2.43}$	9.8×10^{-6}
QCD dijets	$12.8 \pm 3.7 \times 10^{6}$	5899_{-173}^{+173}	$5.37_{-2.02}^{+3.25}$	4.3×10^{-7}
$W_{\ell v}+\geq 2$ jets	$1.9 \pm 0.04 \times 10^{6}$	$12.3_{-1.8}^{+9.0}$	$4.67_{-0.93}^{+8.73}$	2.4×10^{-6}
$Z_{\ell \ell}+\geq 3$ jets	$51.8 \pm 1 \times 10^{3}$	$2.75_{-2.01}^{+2.02}$	$2.57_{-0.64}^{+0.95}$	5.0×10^{-5}

Table 6: Acceptance for each signal and background dataset in fb after requiring $\sum\left|p_{T}\right|>2.5 \mathrm{TeV}$, and a lepton with $p_{T}>50 \mathrm{GeV}$.

Reconstructed Black Hole Mass

Event Selection 2: Multi Object

$=$ Multi Object selection
$=$ Require 4 Objects: $\mathrm{P}_{\mathrm{T}}>200 \mathrm{GeV}$
= Including at least 1 lepton

- Assume high multiplicity
=Less efficiency for high n

Event Efficiency: Multi Object selection

Dataset						Before selection (fb)	After multi-object requirement (fb)	After lepton requirement (fb)	Acceptance
$n=2, m>5 \mathrm{TeV}$	40.7×10^{3}	$38.9 \pm 0.4 \times 10^{3}$	$14.0 \pm 0.2 \times 10^{3}$	0.34					
$n=4, m>5 \mathrm{TeV}$	24.3×10^{3}	$17.9 \pm 0.3 \times 10^{3}$	4521 ± 126	0.19					
$n=7, m>5 \mathrm{TeV}$	22.3×10^{3}	9953 ± 185	1956 ± 82	0.087					
$n=2, m>8 \mathrm{TeV}$	338	338 ± 4	164 ± 3	0.49					
$t \bar{t}$	833×10^{3}	129 ± 27	36_{-9}^{+12}	4.3×10^{-5}					
QCD dijets	12.8×10^{6}	$38.9 \pm 1.9 \times 10^{3}$	6_{-3}^{+37}	5.6×10^{-7}					
W+jets	560×10^{3}	99_{-22}^{+28}	56_{-13}^{+24}	1×10^{-3}					
Z+jets	51.8×10^{3}	29_{-4}^{+90}	19_{-3}^{+90}	4×10^{-4}					
$\gamma(\gamma)+$ jets	5.1×10^{6}	285_{-76}^{+87}	0_{-0}^{+40}	$<10^{-5}$					

Table 7: Acceptance of the 4-object requirements for each dataset in $\mathrm{fb} .90 \%$ confidence limits are used when no events passed the requirements.

Reconstructed Black Hole Mass

Discovery Potential for $\mathbf{M}_{\mathbf{p}}=1 T \mathrm{EV}$ Black Hole

Discovery Potential:
$=$ Integrated Luminosity for $\mathrm{S} / \sqrt{ } \mathrm{B}>5 \& \& \mathrm{~S}>10$

$=$ Discovery Potential with $\operatorname{SumP}_{\mathrm{T}}$ selection
= Horizontal axis shows production threshold of M_{BH}

=Discovery Potential with Multi Object Selection
= Horizontal axis shows additional cut on reconstructed M_{BH}
$=$ There is large uncertainty when M_{BH} is close to M_{P}
$=$ Our assumption (semi-classical calculation) is not reliable
$=$ We set minimum M_{BH} at 5 TeV , and above two methods have been studied for calculation discovery potential
$=$ Only a few pb^{-1} is needed for 5 TeV discovery

Mass Reconstruction

- Mass information is important for more study: cross section, Planck Scale and number of extra dimensions
- A part of mass information is missed as a momentum of an undetected particle $=$ A requirement of small missing E_{T} can improve the center value and also the resolution

		Normalisation	Mean (GeV)	Resolution (GeV)
Without	Narrow	1018 ± 26	-217 ± 5	276 ± 9
E_{T} requirement	Wide	276 ± 30	-148 ± 9	722 ± 13
With	Narrow	318 ± 12	-116 ± 8	215 ± 9
E_{T} requirement	Wide	108 ± 7	118 ± 18	635 ± 16

Measurement of Features of TeV-Scale Gravity

FA attempt to estimate the features using energy spectrum of Hawking radiation had been studied
$=$ But non-Hawking radiation effects(such a grey-body factor) and detector effects make it difficult
$=$ One of the possibility is extract from xsec

- Xsec strongly depends on M_{P}
$=\mathrm{n}$ dependence is not so strong
$=$ Left figures show one of the other methods
$=$ Using emission probability of high energy particles ($\mathrm{E} \sim \mathrm{M}_{\mathrm{BH}} / 2$)
- Such particles should be generated at fist of BH decay
= Then, they should be radiated by Hawking radiation with generated M_{BH}

Summary

$=$ Black hole production is one of the helpful signal for TeV scale gravity
$=$ Which can solve one of the big homework in 20century
$=$ LHC is the first experiment which can produce TeV energy objects directly
$=$ LHC has a potential of generating mini(TeV scale)-black holes
$=$ The ATLAS experiment has an enough potential for detection of black holes
= Most of events passed trigger, separation from backgrounds is easy
$=$ Only a few pb^{-1} is needed for 5 TeV discovery
$=$ Black Hole may be discovered in a few days
$=$ With $100 \mathrm{pb}^{-1}$, the discovery potential reaches to 8 TeV black holes
$=$ Some methods to estimate the parameters of TeV -scale gravity have been studied
$=$ There are uncertainties which are inherent in the model especially around $\mathrm{M}_{\mathrm{BH}} \sim \mathrm{M}_{\mathrm{D}}$
$=$ But if the semi-classical estimation is valid even only in $M_{B H} \gg M_{D}$, we will see the mini-black holes in an early stage of the ATLAS experiment

