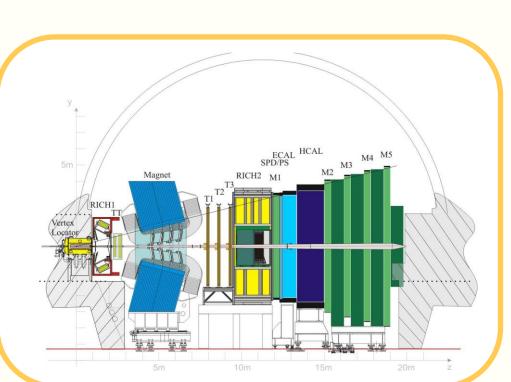


Probing photon polarization in Bs-> oy decay at LHCb

Presented by Lesya Shchutska, ITEP, Moscow and MIPT On behalf of the LHCb collaboration

The LHC beauty experiment



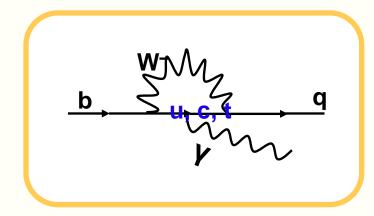
Is dedicated for precise measurements THE MIRROR DID NOT SEEM TO BE OPERATING PROPERLY. of CP violation and rare decays of B mesons.

- Forward geometry: at high energies both the b and b hadrons are produced at the same forward (backward) cone.
- crossings produce 1 pp-collision. > VErtex LOcator allows precise resolution of B production (σ_z =8.3 μ m, σ_{xv} =0.4 μ m) and decay **vertices**. ⇒ 2 Ring Imaging Cherenkov detectors provide **hadron** identification in a wide momentum range (1-100 GeV/c)

 \rightarrow Operating luminosity L=2×10³²cm⁻²s⁻¹: 80% of bunch-

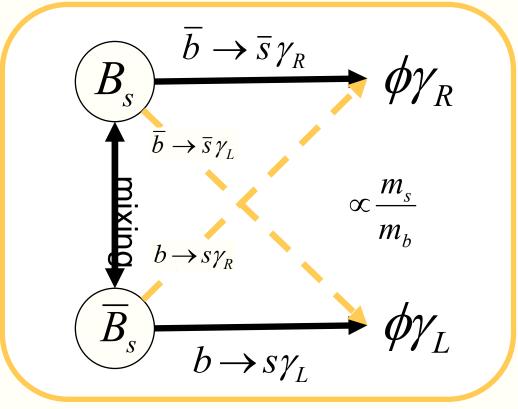
b→sγ process

In the SM photon is almost 100% polarized



⇒final state is *flavor specific*. Interference can happen only with a *helicity flip*.

Measuring CPviolating effects we therefore indirectly probe photon polarization.



New horizon at LHCb

 $\Gamma(\mathrm{B}_q(\bar{\mathrm{B}}_q) \to f^{CP}\gamma) \propto e^{-\Gamma_q t} \left(\cosh \frac{\Delta \Gamma_q t}{2} - \mathcal{A}^\Delta \sinh \frac{\Delta \Gamma_q t}{2} \pm \right)$ $\pm \mathcal{C}\cos\Delta m_q t \mp \mathcal{S}\sin\Delta m_q t$

B-factories

 $\Delta\Gamma \approx 0 \Rightarrow$ A^{Δ} not measurable S≈sin2ψ×sin2β C≈0 - direct CPV

 $\sigma_1 = 52 \pm 5 \text{fs}$

 σ =59±3fs

 $f_{core} = 78 \pm 6\%$

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

 $\cos \theta < -0.5$

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

 σ_2 =114±7fs

 $f_{core} = 51 \pm 9\%$

LHCb B_s -system: $\Delta\Gamma/\Gamma \approx 0.1 \Rightarrow A^{\Delta}!$ $A^{\Delta} \approx \sin 2\psi \times \cos 2\phi_s \approx \sin 2\psi$ $S \approx \sin 2\psi \times \sin 2\phi_s << 1$

depends on decay angle θ :

B_s rest frame

 $0.3 < \cos \theta$

B_s flight

direction

 σ =96±7fs

 $=27\pm9\%$

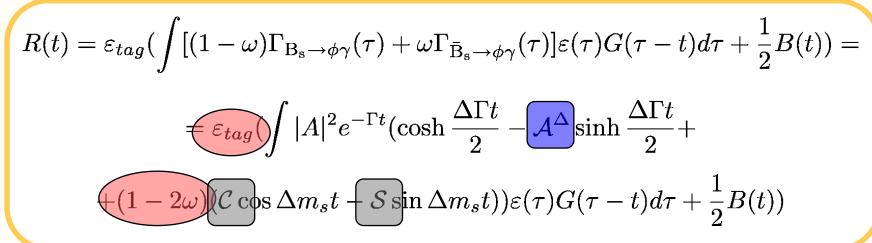
 $\tan \psi = \frac{A(\bar{B} \to f^{CP} \gamma_R)}{A(\bar{B} \to f^{CP} \gamma_L)}$ Current precision $\sigma_{\sin 2\psi} \approx 0.4$ sin2ψ-fraction of wrong-polarized photons $\approx 2 \text{m}_{\text{s}}/\text{m}_{\text{b}}$ in the SM

Signal proper time resolution

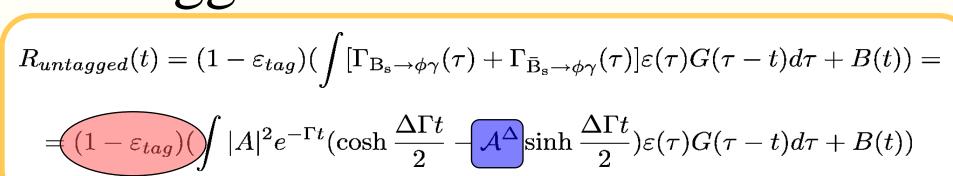
C≈0

Measured decay rate

Tagged events:

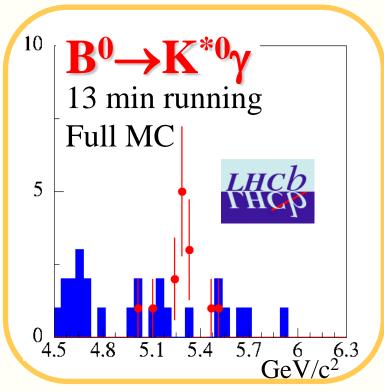


Untagged events:

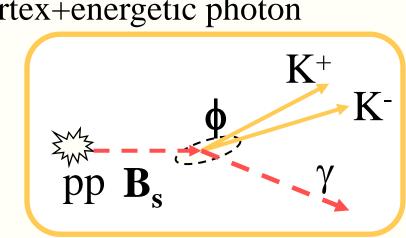


Effective statistics for: C and S is $\varepsilon_{\text{tag}}(1-2\omega)N=0.24N$ A^{Δ} is N

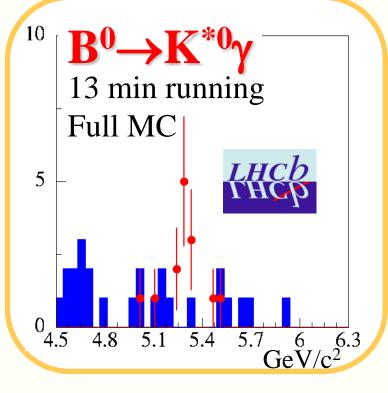
Event selection and yield



At LHCb we will select per 2fb⁻¹: $B_s \rightarrow \phi \gamma: 11k, B/S < 0.55@90CL$ Resolutions for $B_s \rightarrow \phi \gamma$: mass: 90MeV/c^2 proper time (average): 78 fs Similar selections:



B-candidate points to pp-vertex and its momentum direction coincides with the production-decay vertices direction



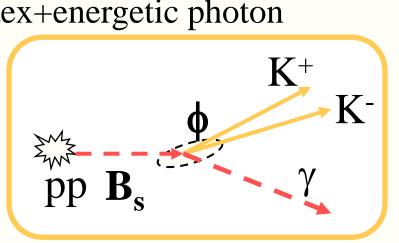
1 year running

Toy MC

 $B_s \rightarrow \phi \gamma$

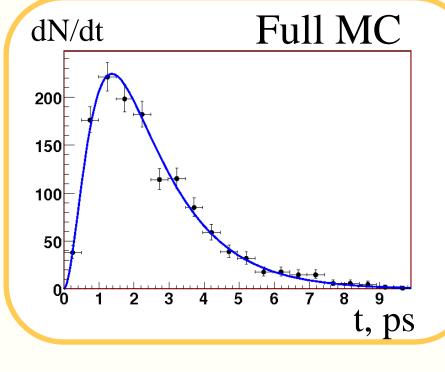
 $B^0 \rightarrow K^{*0}\gamma$: 68k, B/S=0.60±0.16

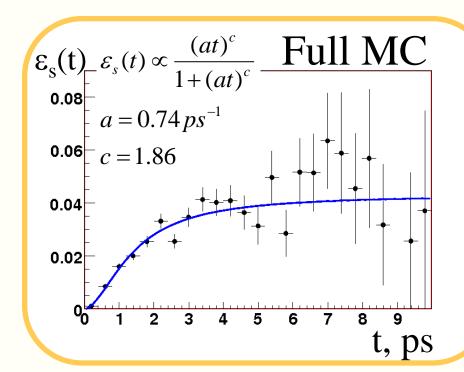
2 charged tracks not pointing to ppvertex+energetic photon



To describe the effect measured proper time errors used for per-event resolution.

Signal proper time acceptance



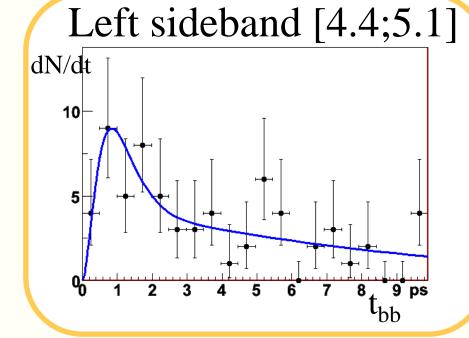


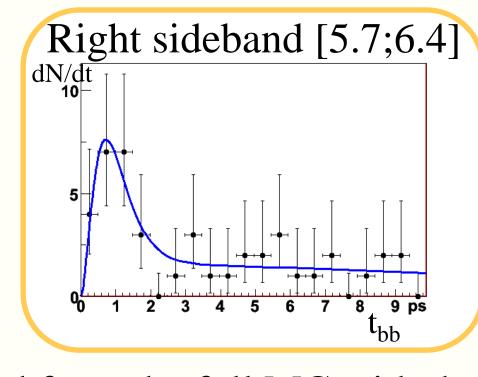
Efficiency of selection as a function of proper time. Have to be "known" precisely:

5% bias in "a"⇒bias in sin 2ψ ~0.2

Can be extracted from data using control channels: $B^0 \rightarrow K^{*0} \gamma$ or $B_s \rightarrow J/\psi \phi$

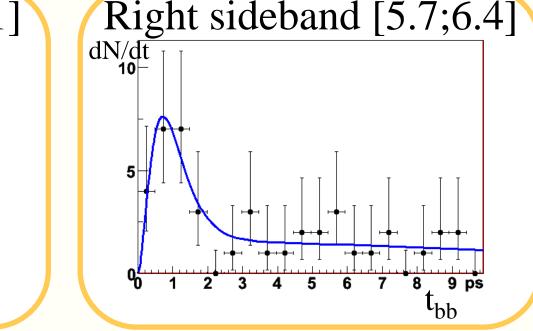
Background treatment





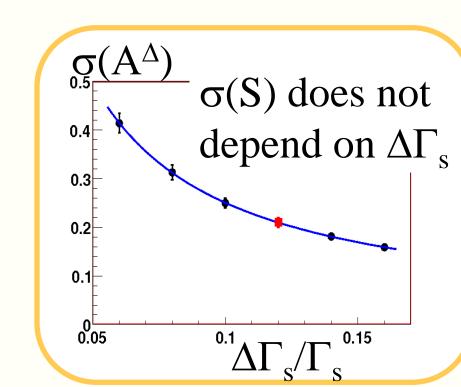
Background shape estimated from the full MC with the relaxed selection.

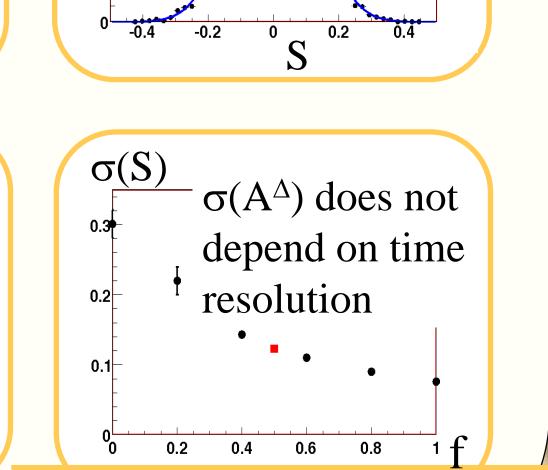
$$P_{b\bar{b}}(m,t) = e^{-\mu m} \frac{(at)^{c}}{1 + (at)^{c}} \left((\alpha_{0} + \alpha_{1} \Delta m) e^{-\frac{t}{\tau_{1}}} + (\beta_{0} + \beta_{1} \Delta m) e^{-\frac{t}{\tau_{2}}} \right)$$



Time shape changes with mass \Rightarrow careful with the transition between the sidebands:

Sensitivity to parameters A^Δ, S, C $\sigma(S) = 0.11$ $\sigma(A^{\Delta})=0.22$ $\sigma(C)=0.12$





 $G(t-\tau)=f\times G_1(\sigma=52fs)+(1-f)G_2(\sigma=114fs)$

O(10⁴) experiments with RooFit.

Toy Monte Carlo studies

Unbinned maximum likelihood fit: mass, proper time and its error distributions.

- Proper time resolution from per-event proper time errors.
- Signal acceptance function will be extracted from the control channels.
- $\triangle \Gamma/\Gamma = 0.12$ for the main study, will be known from other LHCb measurements.
- $\Delta m_s = 17.77 \text{ ps}^{-1}$
- Background mass-time shape is found from the sidebands.

Summary and follow-ups

- The expected sensitivity to the measurement of photon polarization after 1 year is $\sigma(A^{\Delta})=0.22$, $\sigma(S)=0.11$, $\sigma(C)=0.12$.
- The proper time acceptance should be determined from data: $B^0 \rightarrow K^{*0} \gamma$ or $B_s \rightarrow J/\psi \phi$. This issue is under study now.
- \rightarrow The precision of A^{Δ} measurement won't suffer in case we have worse proper time resolution than found from full MC.
- Dependence on the background composition is quite moderate but on its amount is more pronounced. The background shape can be precisely determined from the sidebands.

Likelihood function

Performed simultaneous fit of tagged and untagged events. For each tagging category κ (B_s: -1, \overline{B} _s: +1, untagged: 0):

$$P_{\kappa}(t,m) = f_{s} \frac{\left\{ e^{-\Gamma \tau} [I_{+}(\tau) + \kappa(1 - 2\omega)I_{-}(\tau)] \right\} \otimes G(t - \tau)\varepsilon(t)g_{s}(m)}{\int \left\{ e^{-\Gamma \tau} [I_{+}(\tau) + \kappa(1 - 2\omega)I_{-}(\tau)] \right\} \otimes G(t' - \tau)\varepsilon(t')dt'} + (1 - f_{s})\varepsilon_{b}(m,t)$$

$$I_{+}(au) = \cosh rac{\Delta \Gamma au}{2} - \mathcal{A}^{\Delta} \sinh rac{\Delta \Gamma au}{2},$$
 $I_{-}(au) = \mathcal{C} \cos \Delta m_{s} au - \mathcal{S} \sin \Delta m_{s} au$

$$\mathcal{L}_0 = \prod_{i=1}^{N_{ ext{B}_{ ext{S}}}} P_{-1}(m_i, t_i, \sigma_{ti}) \prod_{i=1}^{N_{ ext{ar{B}}_{ ext{S}}}} P_1(m_i, t_i, \sigma_{ti}) \prod_{i=1}^{N_{untagged}} P_0(m_i, t_i, \sigma_{ti})$$