

PHYSICS AND STATUS OF TOTEM

Karsten Eggert
Penn State University

on behalf of the

TOTEM Collaboration

http://totem.web.cern.ch/Totem/

TOTEM

TOTEM Physics Overview

Diffraction: soft and hard

Forward physics

Karsten Eggert / Penn State - p. 2

Total p-p Cross-Section

~ In² s

Current models predictions: 90-130 mb

Aim of TOTEM: ~1% accuracy

COMPETE Collaboration fits all available hadronic data and predicts:

LHC:
$$\sigma_{tot} = 111.5 \pm 1.2 + 4.1 \text{ mb}$$

[PRL 89 201801 (2002)]

Facts about the proton

blacker radius increases edge area increases

proton at LHC

Regge:

$$\sigma_{tot} \sim \sum A_i s^{\alpha_i(0)-1}$$
 $\alpha_P = 1.08$ $\alpha_R = 0.54$ $\sim 21.7 \text{ s}^{0.0808} + 56.08 \text{ s}^{-0.4525}$

Geom. Scaling:

$$\sigma_{el} \sim \sigma_{tot} \sim B(s,0) \sim R^2(s) \sim In^2s$$

Elastic pp Scattering: Predictions for 14 TeV

3-gluon exchange at large t:

 $\frac{d\sigma}{dt} \sim Ct^{-8}$ independent of s

Experimental layout of TOTEM

Leading Protons detectors at 147,220m from the IP

Longest experiment at the LHC (440m)

The TOTEM Detectors

TOTEM

T1 telescope

- Cathode Strip Chambers (CSC)
- $3.1 < |\eta| < 4.7$
- 5 planes with measurement of 3 coordinates per plane
- 3 deg rotation and overlap between adjacent planes
- Primary vertex reconstruction allow background rejection
- Trigger with anode wires

Karsten Eggert / Penn State - p. 8

T1 support structure

TOTEM

T1 Telescope

Ageing studies at the GIF: 12-month test with ~0.07 C/cm accumulated charge on wires corresponding to ~5 years at L=10³⁰cm⁻²s⁻¹

Production at Gatchina (PNPI): 70 CSCs

Test and assembly done at CERN

Cosmic Ray test set-up

15 CSCs for first 1/4 telescope

Even firemen help!!

Karsten Eggert / Penn State - p. 11

1/4 T1 Telescope complete with CSC chambers

15 CSCs mounted 3 by 3

Tilt between layers

Karsten Eggert / Penn State - p. 12

T2 GEM

T2 Telescope (GEM)

Pads: $65(\varphi) \times 24(\eta) = 1560 \text{ pads}$ $\Delta \eta \times \Delta \varphi = 0.06 \times 0.015\pi$ $2 \times 2 \text{ mm}^2 - 7 \times 7 \text{ mm}^2$

Strips: 256 (width: 80 μm,pitch: 400 μm)

Technology used in COMPASS

T2 and its Electronics

Lab setup:

T2 GEM Assembly

Production at Helsinki Final assembly at CERN

Installation of the T2 telescope in CMS

Physics at LHC 2008 Karsten Eggert / Penn State - p. 17

Roman Pot

Mechanical rigid connections between horizontal and vertical pots and BPM important for alignment

TOTEM

TOTEM

Si Edgeless Detectors for Roman Pots

Planar technology with CTS (Current Terminating Structure)

The Hybrid and the Assembly

Assembly of 10 detectors

"Champignon"

Kapton hybrids laminated on CE7

The window and the detector assembly

Level-1 Trigger Schemes at all run conditions

TOTEM trigger rate : few kHz adjusted to luminosities

η-Acceptance

non-diffractive minimum bias events

	σ [mb]	trigger loss [mb]	systematic error after extrapolations [mb]
Non-diffractive inelastic	58	0.06	0.06
Single diffractive	14	3	0.6
Double diffractive	7	0.3	0.1
Double Pomeron	1	0.2	0.02
Total	80	3.6	0.8

All detectors with trigger capability

Trigger acceptance > 95% for all inelastic events

Soft Diffraction

 $\phi \| M_{x}^{2} = \xi s$

Rapidity Gap

η

DPE

 $M_X^2 = \xi_1 \, \xi_2 s$

Rapidity Gap -In ξ₂

η

- Measure ξ
- Compare with rap gap $\Delta \eta = -ln\xi$ gap suppression

• Cross-section $\sigma(\xi,t)$

$$\left(\frac{\mathrm{d}\sigma}{\mathrm{d}\Delta\eta}\right)_{t=0} \approx \mathrm{constant} \implies \frac{\mathrm{d}\sigma}{\mathrm{d}\mathrm{M}^2} \sim \frac{1}{\mathrm{M}^2} \implies \frac{\mathrm{d}\sigma}{\mathrm{d}\xi} \sim \frac{1}{\xi}$$

Signatures of Single Diffractive Events

 $^{10}\eta$

5

0

Physics at LITO 2000

Typical individual cross-sections: $\sigma \sim 1 - 2 \text{ mb}$

Multiplicity distributions are difficult

Measurement of Forward Protons: the principle

Diffractive protons : hit distribution @ RP220

Detect the proton via:

its momentum loss (low β)

its transverse momentum (high β)

Measurement of Forward Protons: the Acceptances

Variables in diffraction: ξ, t and related mass M

Measure individual cross-sections and the correlation between the above variables Study of the corresponding rapidity gap and its suppression

Outlook: Proton Detection at Lower ξ-Values

Good acceptance and momentum resolution for diffractive protons needs:

large dispersion D (few m) $(x = \xi D)$

small beam width (< 1 mm)

Where in the LHC is it easy and are these requirements best fulfilled?

Proton Acceptance of a "Combined IP3 + RP220 TOTEM" Experiment

$$M_{PP}^2 = \xi_1 \; \xi_2 \; s$$

ξ-Acceptance

DPE Mass Spectrum with Detector Acceptance

Accessible physics depends on luminosity & β^*

CMS + TOTEM: Acceptance

largest acceptance detector ever built at a hadron collider

90% (65%) of all diffractive protons are detected for $\beta^* = 1540$ (90) m

pp Interactions

Non-diffractive

Diffractive

Colour exchange

Colourless exchange with vacuum quantum numbers

 $dN / d \Delta \eta = exp (-\Delta \eta)$

 $dN / d\Delta \eta = const$

rapidity gap

Incident hadrons acquire colour and break apart

Incident
hadrons retain
their quantum
numbers
remaining
colourless

GOAL: understand the QCD nature of the diffractive exchange

- will be ready for the runs in 2009
- will run under all beam conditions with a complete detector in 2009
- will need special high β* runs (hopefully in 2009) for: total cross-section diffraction
- * will pursue a common physics program with CMS in a later stage

Diffractive scattering is a unique laboratory of confinement & QCD: A hard scale + protons which remain intact in the scattering process

