Physics at LHC

Diffractive Physics: What answers do we expect from the LHC?

Mario Deile

CERN PH-TOT

02.10.2008

Dominant Event Classes in p-p Collisions

Signatures of Diffractive Events

By rapidity gap: • Х **Rapidity Gap** φ SD $(M_x^2 = \xi s)$ -In ξ Rapidity Х **Rapidity Gap** DPE Gap $(M_x^2 = \xi_1 \xi_2 s)$ -In ξ₁ -ln ξ₂ η

Reconstruct proton momentum loss $\xi = \Delta p/p$ from diffractive system X (inelastic component):

$$\xi_{1,2} = \frac{\Delta p}{p} = \frac{1}{\sqrt{s}} \sum_{i \in X} E_T^i e^{\pm \eta_i}$$

or from rapidity gap:

$$\xi_{1,2} = e^{-\Delta \eta_{1,2}}$$

 \rightarrow needs good rapidity coverage

• By leading protons:

needs detectors in beam-pipe insertions far from IP close to the beam (e.g. Roman Pots, moving beam pipes etc.); Already done at ISR, SppS, HERA, RHIC, Tevatron.

Particularly strong focus on leading proton measurement at LHC. Roman Pots on both sides of the IPs.

LHC Experiments: Pseudorapidity Acceptance

17m

0m

140m 220m 240m 420m

Mario Deile

ALICE: diffractive gap trigger

No Roman Pots, but Zero Degree Calorimeter for neutral particles.

Identify diffractive events by their rapidity gap and leading neutrals from N* excitations.

See presentation on ALICE diffractive physics programme by R. Schicker.

Total p-p Cross-Section

Total Cross-Section and Elastic Scattering at low |t|

Total Cross-Section and Elastic Scattering at low |t|

TOTEM Approach:

Measure the exponential slope B in the t-range $0.002 - 0.2 \text{ GeV}^2$, extrapolate d σ /dt to t=0, measure total inelastic and elastic rates (all TOTEM detectors provide L1 triggers):

Total Cross-Section and Elastic Scattering at low |t|

TOTEM Approach:

Measure the exponential slope B in the t-range $0.002 - 0.2 \text{ GeV}^2$, extrapolate d σ /dt to t=0, measure total inelastic and elastic rates (all TOTEM detectors provide L1 triggers):

p. 9

Elastic pp Scattering at 14 TeV: Model Predictions

Big uncertainties at large |t|: Models differ by ~ 3 orders of magnitude! TOTEM will measure the complete range with good statistics

Detection of Diffractively Scattered Protons

Transport equations:

Optics properties at RP220:

$\beta^* = 1540 \text{ m}$	$L = 10^{28} - 2 \times 10^{29}$	95% of all p seen; all ξ
$\beta^* = 90 \text{ m}$	$L = 10^{29} - 3 \times 10^{30}$	65% of all p seen; all ξ
$\beta^* = 0.5 - 2 \text{ m}$	$L = 10^{30} - 10^{34}$	p with $\xi > 0.02$ seen; all t

Diffraction at $\beta^* = 0.5 - 2$ m with high Luminosity

FP420 Project (IP1 and IP5)

Alternative idea: put detectors in momentum cleaning region IR3 (\rightarrow talk by K. Eggert)

Measurement of Diffractive Cross-Sections

Aim: measurement of all kinematic variables and their correlations. Single Diffraction: (Regge theory) $\frac{d^2 \sigma_{SD}}{dt \, d\xi} = f_{IP/p}(t,\xi) \cdot \sigma_{IP-\bar{p}}(s,\xi) \sim \frac{1}{\xi^{d+\varepsilon}} e^{-b|t|}$ Pomeron flux in proton ~ $e^{bt}/\xi^{1+2\varepsilon}$ Pomeron-proton cross-section ~ $(s\xi)^{\varepsilon}$ Slope parameter at LHC: b ~ 5 – 7 GeV⁻²? \Leftrightarrow distance of diffractive interaction R ~ 0.5 fm

 ξ and t dependence experimentally confirmed up to Tevatron, but total SD cross-section lower.

Difficulty in Single Diffraction: Mass from proton measurement:

 $M = \sqrt{\xi s}$

 $\sigma(\xi) \sim 2 \ x \ 10^{-3}$

(principally limited to 10⁻⁴ by beam energy spread!)

- \rightarrow Mass resolved for M > 450 GeV
- → need to calculate M directly from diffractive system

Rapidity Gap vs. Proton Momentum

Example: Single Diffraction measured with $\beta^* = 90$ m (protons with all ξ detected).

Rapidity Gap Survival in Hard Diffraction

• normalisation different (factor 10)

difference related to (soft) rescattering effects between spectator partons

Rapidity Gap Survival Probability: 2 gaps vs 1 gap

Central Diffraction (DPE)

5-dimensional differential cross-section: $\left|\frac{d^{5}\sigma}{dt_{1} dt_{2} d\xi_{1} d\xi_{2} d\phi} \Box \frac{1}{\xi_{1}^{1+\varepsilon}} \frac{1}{\xi_{2}^{1+\varepsilon}} e^{-b|t_{1}|-b|t_{2}|}\right|$

Any correlations?

Mass spectrum: change variables $(\xi_1, \xi_2) \rightarrow (M_{PP}, y_{PP})$: $M_{PP}^2 = \xi_1 \xi_2 s$; $y_{PP} = \frac{1}{2} \ln \frac{\xi_1}{\xi}$

p. 17

Central Production

High gluon fraction in Pomeron (measured by HERA, Tevatron) \Rightarrow Use the LHC as a gluon-gluon collider and look for resonances in d σ /dM

Special Case: Exclusive production

- clean signature and redundancy: measure both protons and central system
- exchange of colour singlets with vacuum quantum numbers

 \Rightarrow Selection rules for system X: J^{PC} = 0⁺⁺, (2⁺⁺, 4⁺⁺)

Study the kinematic properties of exclusive production (e.g. t-spectrum and p_T distrib. of X), compare with inclusive production (M = X + ?)

Exclusive Production: Examples

Predictions for the LHC:

System M	σ_{excl}	Decay channel	BR	Events at $L_{int} = 0.3 \text{ pb}^{-1}$	Events at $L_{int} = 0.3 \text{ fb}^{-1}$
χ _{c0} (3.4 GeV)	3 μb [kmrs]	$\gamma J/\psi \rightarrow \gamma \mu^+\mu^-$ $\pi^+ \pi^- K^+ K^-$	6 x 10 ⁻⁴ 0.018	140 4500	140000 4.5 x 10 ⁶
χ _{b0} (9.9 GeV)	4 nb [KMRS]	$\gamma Y \rightarrow \gamma \mu^+ \mu^-$	$\leq 1.5 \times 10^{-3}$	≤ 0.5	≤ 500
jj ($\eta_1 - \eta_2 > 1$, E > 50 GeV)	0.2 nb			60	60000
$\frac{\gamma\gamma}{(E > 5 \text{ GeV})}$	600 fb			0.18	180

$$\beta^* = 90 \text{ m} \qquad \beta^* = 0.5 - 2 \text{ m}$$

$$L = 10^{29} - 3 \times 10^{30} \qquad L = 10^{30} - 10^{34}$$

Other Central Production Processes

Odderon = hypothetical analogon to Pomeron with C = -1QCD: Pomeron = 2 gluons, Odderon = 3 gluons

 \rightarrow systems with C = P = -1 : e.g. J/ Ψ , Y

See Photon/Odderon studies by Alice.

Detection of Central Production

Ideal scenario: reconstruct kinematics from protons AND resonance decay products (→ redundancy!)

But:

Only possible for small production rapidities y i.e. symmetric events $\xi_1 \approx \xi_2$

Detection of Central Production

Ideal scenario: reconstruct kinematics from protons AND resonance decay products (→ redundancy!)

But:

Only possible for small production rapidities y i.e. symmetric events $\xi_1 \approx \xi_2$

Diffractive Higgs Production

Difficulty of diffraction at high luminosity: Pile-up of several events per bunch crossing; $L = 1 \times 10^{34}$: 35 events / bunch crossing Combinations faking DPE signature:

e.g. (single diffraction) + (non-diffractive inelastic) + (single diffraction)

→ Leading protons and central diffractive system have to be matched: timing measurements in leading proton detectors $(10 - 20 \text{ ps in FP420}) \rightarrow z(\text{vertex})$

Summary: Questions on diffraction addressed by the LHC

- Total p-p cross-section measurement on the $\sim 1\%$ level
- Differential elastic cross-section measured over 4 orders of magnitude in t with very different scattering mechanisms
- Event topologies and differential cross-sections of diffractive processes (Tools: leading proton detectors, different specially designed beam optics, good rapidity coverage)
- Rapidity gap studies based on proton tagging
- Study of central production with search for resonances: inclusive vs exclusive processes

CMS+TOTEM Forward Detectors

Symmetric experiment: RPs on both sides! → Unique tool for diffraction

CMS + TOTEM: Acceptance

largest acceptance detector ever built at a hadron collider

90% (65%) of all diffractive protons are detected for $\beta^* = 1540$ (90) m

 $\eta = - \ln tg \theta/2$

Leading Proton Detection: TOTEM Roman Pots

Vertical Roman Pot Horizontal Roman Pot 4 meters

"edgeless" Si strip detectors (10 planes per pot)

Leading proton detection at distances down 10 $\sigma_{\text{beam}} + d$ Need "edgeless" detectors (efficient up to physical edge) to minimise width *d* of dead space.

TOTEM: specially designed silicon strip detectors (CTS), efficient within 50 μ m from the edge

Leading Proton Detection: FP420 (IP1 and IP5) and ATLAS RP220

Proton spectrometers proposed: at 220m and ~420 m from IP1 and at ~420m from IP5

Two (or three) stations for each spectrometer

Two pockets for each station: tracking and timing detectors

Mechanical design based on movable "Hamburg Pipe":

New Idea: Proton Measurement in IP3

Detects protons from all interaction points.

Acceptance in Momentum Loss ξ

ATLAS + LHCf Forward Detectors

The Experiments: ALFA (IP1)

The Experiments: LHCf (IP1)

Characteristics of Diffractive Events

Non-diffractive events:

Exchange of colour: Initial hadrons acquire colour and break up. Rapidity gaps filled in hadronisation

 \rightarrow Exponential suppression of rapidity gaps:

 $\mathbf{P}(\Delta \eta) = \mathrm{e}^{-\rho \, \Delta \eta},$ $\rho = dn/d\eta$

Diffractive events:

Exchange of colour singlets with vacuum quantum numbers ("Pomerons")

 \rightarrow rapidity gaps $\Delta \eta$ with $P(\Delta \eta) = const.$

Many cases: leading proton(s) with momentum loss $\Delta p / p \equiv \xi$ (typically $\xi < 0.1$)

Elastic Scattering - from ISR to Tevatron

• exponential slope B at low |t| increases: $B \sim R^2$

Elastic Scattering - from ISR to Tevatron

Diffractive minimum: analogous to Fraunhofer diffraction: $|t| \sim p^2 \theta^2$

• exponential slope B at low |t| increases

Elastic Scattering - from ISR to Tevatron

Diffractive minimum: analogous to Fraunhofer diffraction:

- exponential slope B at low |t| increases
- minimum moves to lower |t| with increasing s
 - \rightarrow interaction region grows (as also seen from σ_{tot})
- depth of minimum changes
 → shape of proton profile changes
- depth of minimum differs between pp, p⁻p
 - \rightarrow different mix of processes

Elastic Scattering Acceptance

Acceptance for elastically scattered protons depends on machine optics (β^*)

p. 39

Measurement of $\rho = \Re f(0) / \Im f(0)$

 ρ is interesting for σ_{tot} :

prediction of σ_{tot} at higher s via dispersion relation:

 $\rho(s) = \frac{\pi}{2\sigma_{tot}(s)} \frac{d\sigma_{tot}}{d\ln s}$

Try to reach the interference region:

- move the detectors closer to the beam than 10 σ + 0.5 mm
- run at lower energy $\sqrt{s} = 2p < 14$ TeV: $|t|_{min} = p^2 \theta^2$

Elastic and Diffractive Fractions of σ_{tot}

Interpretation of diffractive PDF's

Measurement of Resonances

Ideal scenario: reconstruct kinematics from protons AND resonance decay products (→ redundancy!)

But:

Only possible for small production rapidities y i.e. symmetric events $\xi_1 \approx \xi_2$

Measurement of Resonances

Ideal scenario: reconstruct kinematics from protons AND resonance decay products (→ redundancy!)

But:

Only possible for small production rapidities y i.e. symmetric events $\xi_1 \approx \xi_2$

Higgs (SM, MSSM)

SM with $m_H = 120$ GeV: $\sigma \times BR (H \rightarrow bb) = 2$ fb 30 fb⁻¹, $\delta m = 3$ GeV: S/B = 11/10

 $\sigma x BR (H \rightarrow WW^*) = 0.4 \text{ fb}$ 30 fb⁻¹: S/B = 8/3

MSSM:

Central exclusive diffractive production $Br(h/H/A \rightarrow bb) \cdot \sigma$ (fb) MSSM 10 $\tan\beta = 30$ 10 Standard Model 10 [from A. Martin] 5 1 1 1 1 1 1 1 10 $M_{h/H/A}^{160}$ (GeV) 100 120 140 200 220 240

MSSM Examples:

 $m_{A} = 130 \text{ GeV}$

	$\tan\beta = 30$	$\tan\beta = 50$
m _A	130 GeV	130 GeV
$\sigma x BR (A \rightarrow bb)$	0.07 fb	0.2 fb
m _h	122.7 GeV	124.4 GeV
$\sigma x BR (h \rightarrow bb)$	5.6 fb	13 fb
m _H	134.2 GeV	133.5 GeV
$\sigma x BR (H \rightarrow bb)$	8.7 fb	23 fb

$m_{A} = 100 \text{ GeV}$

	$\tan\beta = 30$	$\tan \beta = 50$
m _A	100 GeV	100 GeV
$\sigma x BR (A \rightarrow bb)$	0.4 fb	1.1 fb
m _h	98 GeV	99 GeV
$\sigma x BR (h \rightarrow bb)$	70 fb	200 fb
m _H	133 GeV	131 GeV
$\sigma x BR (H \rightarrow bb)$	8 fb	15 fb