

First Physics with ALICE

Physics at LHC Split, 29.09. – 04.10.2008 Jan Fiete Grosse-Oetringhaus (for the ALICE collaboration)

Content

- ALICE
- First Physics Plans
 - Pseudorapidity density $dN_{ch}/d\eta$
 - Multiplicity distribution
 - Particle Spectra

11.09. run 58338 ev 27

Data needed for "first" physics 1-2 days to 1-2 weeks

ALICE

- Heavy-ion experiment
 - p+p program integral part of the physics program
- Designed for $dN_{ch}/d\eta \mid_{\eta=0} up$ to 6000
 - Low p_T cut off ~ 30 MeV/c
- Tracks and identifies particles over broad momentum range (~ 100 MeV/c – 100 GeV/c)
- Reconstruct short-lived particles (hyperons, B and D mesons) → decay vertices
 - Primary vertex resolution ~ 100 μm (p+p), 10 μm (Pb+Pb)

Particle Identification

Silicon Pixel Detector

- Silicon Pixel Detector (SPD)
 - Two innermost layers of the ITS
 - Radii of 3.9/7.6 cm (|η| < 1.4/2.0)
 - 9.8 M channels
 - MB trigger (Fast OR)
 - Tracklet: 2 points + vertex
 - Very efficient down to p_T ~ 30 MeV/c
 - Nominal acceptance 99%
 - but ~ 10 % need hardware fixes
- The Inner Tracking System has been aligned with 50 K cosmic muons

 \rightarrow residual misalignment < 10 µm

Time Projection Chamber

- Largest TPC in the world (90 m³)
- 0.85 m < r < 2.5 m
- |η| < 0.9 (1.5)
- 560 K channels, up to 160 clusters per track
- Tracking & PID
- Laser system for calibration and alignment

Minimum Bias Trigger

- Two arrays of segmented scintillator counters located in • forward direction (VZERO)
 - Trigger bits: V0 A, V0 C
- MB1: SPD or V0 OR • MB3: SPD and V0_AND

MB2: SPD and VO OR

First Measurements

- Pseudorapidity density dN_{ch}/dη
- Multiplicity distribution
- Momentum distribution dN_{ch}/dp_T
 - Unidentified & Identified
- Correlation <p_T> vs. N_{ch}, still unexplained
- Physics aims
 - Study of energy dependence
 - Describe collisions at a new energy, tune MC generators, understand underlying event (soft QCD)
 - Reference for Pb+Pb

Systematic Uncertainties for $dN_{ch}/d\eta$ (SPD tracklets)

			day-1	ultimate
Track-to- particle correction	Material Budget (2 % radiation length)		negl.	
	Tracklet Selection ($\Delta \phi$ cut)		< 1%	
	p _T cut off		negl.	
	Particle Composition		negl.	
Vertex + Trigger	Cross sections of process types	correcting to INEL	2 %	< 1 %**
		correcting to NSD	8 %	< 1 %**
Global	Misalignment		negl.	
	Miscalibration		?	
	Beam-gas/Pile-up		?	

** assuming rel. x-sections determined with 5% precision

Multiplicity Measurement

- KNO scaling
 - Multiplicity distributions at all energies fall on one curve when expressed as z := n/<n>
 - Broken at 900 GeV (UA1, UA5) in full phase space, valid in limited η-intervals
 - Remains only valid in |η| < 1 for soft events at 1.8 TeV (CDF)
- Negative binomial distributions (NBD)
 - Up to 540 GeV in full phase space (ISR, UA5)
 - At 1.8 TeV only in $|\eta| < 0.5$ (CDF)
- Two-component model
 - Combination of 2 NBDs (representing soft and (semi-)hard part of the collision)
 - Works up to 1.8 TeV

Errors only statistical

20

60

80

 N_{ch}

100

10⁻⁵

UA1: NSD events

120

140

N_{ch}

TPC tracking

- Calibration with laser tracks + cosmics
- Alignment ongoing
- p_⊤ resolution ~ 10 % @
 10 GeV/c (without calibration)
- p_T up to ~ 20 GeV/c quickly accessible with ~ 150 k events

- Applied on cosmics
- dE/dx resolution
 σ ~ 5.7%
- Particle identification good at p_T < 1 GeV/c
 - 20.000 events sufficient for this region

Proton + detector collision 11.09. run 58338 ev 27

Summary

- ALICE can measure with a few days of data basic properties of p+p collisions from 900 GeV to 14 TeV
 - Down to very low p_T (~ 30 MeV/c)
 - Particle identification is available over a large momentum range
- ALICE's measurements will describe p+p collisions at a new energy
 - Characterization of the underlying event
 - Tuning of MC generators (e.g. Pythia and Phojet differ significantly at 14 TeV)
- And much more to come...(in p+p)
 - Baryon transport,
 Strangeness, resonance
 production, femtoscopy,
 heavy flavor, jets, ...

Friday morning: ALICE Status and Potential (J. Schukraft) ALICE Commissioning (S. Chapeland)

References

- Bayesian method
 - e.g. Nucl.Instrum.Meth.A362:487-498,1995
- $dN_{ch}/d\eta \mid_{\eta=0}$ vs. \sqrt{s} , UA1/UA5 multiplicity
 - Phys. Rev. D 41 (1990) 2330
 - Nucl. Phys. B 129 (1977) 365
 - Nucl. Phys. B 335 (1990) 261
 - Phys. Lett. B 160 (1985) 193
 - Z. Phys. C 43 (1989) 357
- Two component model
 - Phys. Rev. D 59 (1999) 094020