Diffraction at the LHC:
a theoretical review
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Hard diffraction = ke P
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Low-mass diffractive dissociation | |

-> multichannel eikonal

Introduce diff'¢ estates ¢;, ¢, (comb"s of p,p*,..) which only
undergo “elastic” scattering (Good-Walker)
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triple-Regge analysis of do/dtd&, including screening

(includes compilation of SD data by Goulianos and Montanha)
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New analysis of soft data KMR
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o attempt to mimic BFKL diffusion iIn
log g, by including three components
to approximate g, distribution —
possibility of seeing “soft = hard” Pomeron transition



Use four exchanges in the t channel
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Parameters
multi-Pomeron coupling A from dogp/dédt data  ( £~0.01)

diffractive eigenstates from cgp(low M)=2mb at sqrt(s)=31 GeV,
-- equi-spread in R?, and t dep. from do/dt

Results | All soft data well described
Osp=AQy With A=0.25 (compared to A=0.2 in Luna et al.)

Api= 0.3 (close to the BFKL NLL resummed value)

o'p; = 0.05 GeV?

These values of the bare Pomeron trajectory yield, after
screening, the expected soft Pomeron behaviour ---
“soft-hard” matching (since P, heavily screened,....P;~bare)

Ar = -0.4 (as expected for secondary Reggeon) ~ 4= ¢(0) -1



KMR | 3-ch eikonal, multi-Regge analysis of available “soft” data
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do_/dt (mb/GeV?)
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DIS: ep2eX  (Yp=2X)
HERA finds that about 10% of these events are
diffractive DIS: ep—2>eX+p (y*p—=2>X+p)

electron

outgoing
proton
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¢ Diffractive DIS
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Diff*¢ partons

x,, =0.003, Q" =10 GeV

from HERA data | - | - |

direct+resolved
Pomeron
(cf. photon)
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diffractive partons g°, g® can be used to predict
diffractive processes with hard scale? Yes, but...
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Photoproduction of leading n

., (I/o)do, \/dx;
ZEUS data Y CE X
0.25 - “pure T :
R
| S2~0.48

0.1

0.05

T T Ty T ‘ T i, T T ‘ T T T T ‘ T T T T ‘ T T T T ‘ T T T T

D’Alesio, Pirner;
Nikolaev,Speth,Zakharov;
Kaidalov,Khoze,M,Ryskin;
Kopeliovich,Potashnikova,
+ Schmidt,Soffer.




Advantages of pp 2 p + (H>bb) +p

accurate determination of M,
using tagged protons, My=Mssing

My=Mgecay Must match My=Msqing
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for
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bb,,, QCD background suppressed by J,=0 selection rule

can determine JP¢.  Selection rule favours 0** production

S/B ~ O(1) for SM 120 GeV Higgs (...but o ~ few fb)

o X 10 for some SUSY Higgs scenarios Kaidalov+KMR

e.g. M,>140 GeV: then h > hgy
H, A decouple from gauge bosons
H, A-> bb,,, Tt enhanced by tan 3

Heinemeyer,Khoze et al
Cox,Loebinger,Pilkington



Survival Probabillity of gaps forpp =2 p + H +p

prob. of proton to be
In diffractive estate |
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S2~0.02 for 120 GeV Higgs at the LHC




bb,, backgroundto pp =2 p + (H>bb,,) + p signal

-- irreducible QCD ggFF->bb,, events
-- gluons mimicing b jets
-- J,=2 contribution

New results:

NLO calculation of gg*”—>bb,, reduces irreducible background
by factor of 2 or more

Shuvaev et al

Also, experimentally, there has been a reduction in the
chance that gluons mimic b jets.



Experimental checks of calculation of o(pp = p + A+ p)

KMR cross section predictions are consistent with the recent
observed rates of three exclusive processes at the Tevatron:

CDF
ppbar 2 p + Y + pbar
ppbar 2 p + dijet + pbar
PPoar 2 P+ e+ Prar (68 x> > Jly +y events)

Early LHC runs can give detailed checks of all of the
Ingredients of the calculation of o(pp =2 p + A+ p),
even without proton taggers
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3 events observed
(one due to nl->vy)

G(eXd W)measured - O'ngb

G(eXCI W)predicted — O'O4pb

E. (1)=6.8 GeV
E. (2)=5.9 GeV

o(yy) =10 fb

for E{¥>14 GeV at LHC




CDF exclusive dijet
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Early LHC checks of
pp2>p+A+p ?

KMR
2

dQ;
Qi
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fata

Possible checks of:

(i) survival factor S2: W+gaps, Z+gaps
(1) generalised gluon f; : Y 2Yp
(1) Sudakov factor T : 3 central jets
(Iv) soft-hard factorisation #(A+gap) evts
(broken by enhanced #(inclusive A) evts
absorptive effects) with A=W, dijet, Y...




S?., = gap survival to rescattering

on intermediate partons /\

There Is controversy about its size.

Seik

Evidence is that S%,, ~ 1
for pp2>p+H+p

-- explicit calc. using soft model

-- kinematic suppression, need
Ay > 2.3 to establish Pomeron exchange

-- HERA leading neutron data, no energy dep. in n yield

-- after including S22, we are left with b > 0.6 fm, where
Q?<turation < 0.3 GeV? (Wattetal), so S?%,,~1

Early LHC probe of S, =




inclusive

diffractive

no. of (A + gap) events

no. of (mclusive A) events

known from HERA




Possibility for LHC to probe S?

enhanced
dR/dlnx p
|_
; .. R = do®i /i
pp = diffve dijet o/ do
pp - Inclve dijet LHC /5 = 14 TeV
=3

107 &

BRI = 40 GeV

rough estimates of enhanced absorption S?,



Exclusive Y production as probe of odderon and f,

v exch odderon exch

o
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~ 50 pb comparable
dy |, _, Bzdak, Motyka,
- X 0.025 (br for Y=>up) Szymanowski,Cudell

can separate by p, of upper proton if it Is tagged

For small p, | yexch dominates For p;>1 GeV

If |yy|<2.5, then sample odderon should show up
fy(X1,X5) with x; in (104, 10-?)



Conclusions — soft diffraction

-- screening/unitarity/absorptive corrections are vital
-- Triple-Regge analysis with screening = g,p Increased by ~3

—> importance of multi-Pomeron diagrams
-- Latest analysis of all available “soft” data:
multi-ch eikonal + multi-Regge + compts of Pom. to mimic BFKL
(showed some LHC predictions ..... Ciota ~ 90 MD)
soft-hard Pomeron transition emerges
“soft” compt. --- heavily screened --- little growth with s
“Intermediate” compt. --- some screening

“hard” compt. --- little screening --- large growth (~pQCD)
-- LHC can explore multigap events -> probe multi-Pomeron
\:/ \:/ \.: structure
i — o LHC is a powerful
i | — probe of models
S T T T of soft processes

SD DPE




Conclusions — hard diffraction

soft analysis allows rapidity gap survival factors to be calculated
for any hard diffractive process

Exclusive central diffractive production, pp—->p+H+p, at LHC has
great advantages, S/B~0O(1), but o ~few fb for SM Higgs.

However, some SUSY-Higgs have signal enhanced by 10 or more.
Very exciting possibility, if proton taggers installed at 420 m

Formalism consistent with CDF data for pp(bar) - p + A + p(bar)
with A =dijet and A=vyyand A=y,

More checks with higher M, valuable.

Processes which can probe all features of the formalism used to

calculate o(pp—=>p+A+p), may be observed in the early LHC runs,
even without proton taggers




