(Towards) First Physics with LHCb

Introduction

- Detector overview and performance
- **Extracting physics from (very) first data**

presented by Andreas Schopper (CERN)

on behalf of the *LHCb* Collaboration

LHCb is a heavy flavour precision experiment searching for new physics in CP-Violation and Rare Decays

New Physics models introduce new particles, dynamics and/or symmetries at a higher energy scale (expected in the TeV region) with <u>virtual particles</u> that appear e.g. in <u>loop mediated processes</u>

B-physics measurements probe New Physics and are complementary to direct searches
will allow to understand the nature and flavour structure of possible New Physics

Search for New Physics

> are New physics already around the corner?

➢ SM consistency at 7% level

LHCb key measurements

In CP-violation:

- $> B_{s} \overline{B}_{s} \text{ mixing angle } \phi_{s}$
- \blacktriangleright weak phase γ in trees
- \blacktriangleright weak phase γ in loops

In Rare Decays:

- ▶ branching ratio of B_s → μµ
- ➢ forward-backward asymmetry in B → K*µµ
- polarization of photon in radiative penguin decays
- → see talks by Andrei Golutvin, Alessia Satta, Val Gibson, William Robert Reece and poster by Lesya Shchutska and Bogdan Popovici

Physics at LHC 2008

B production in LHCb

- \checkmark bb pair production correlated and sharply peaked forward-backward
 - Single-arm forward spectrometer : $\theta \sim 15-300 \text{ mrad}$ (rapidity range: 4.9> $\eta > 1.9$)
 - > Cross section of $b\overline{b}$ production in LHCb acceptance: $\sigma_{bb} \sim 230 \ \mu b$
 - > B^+ (40%), B^0 (40%), B_s (10%), b-baryons (10%), B_c (< 0.1%)
- ✓ LHCb limits luminosity to few 10^{32} cm⁻²s⁻¹ instead of 10^{34} cm⁻²s⁻¹
 - by not focusing the beam as much as ATLAS and CMS
 - maximizes probability of a single interaction per crossing
 - design luminosity soon after start-up

Detector overview and performance

B-Vertex Measurement

6

Momentum and Mass measurement

Particle Identification

Particle identification and L0 trigger

Particle identification and L0 trigger

Status of LHCb

$(\rightarrow$ see talk by Olivier Callot)

- > LHCb detector fully installed and commissioned (except M1), including L0 trigger
- All sub-detectors have undergone the first time and space alignment with cosmics & LHC beam induced particles

Extracting physics from (very) first data

Exploit minimum bias data

Exploiting minimum bias data

in 10⁸ minimum bias events

✓ plenty of K_s→ππ and Λ→pπ
✓ 95% purity with kinematical and vertex cuts only
→ clean & unbiased sample for PID studies
> study hadron identification performance

✓ collect 1400 J/ψ→μμ
✓ use triggered J/ψ data with p_t-cut on single muon
→ second muon unbiased for PID studies

- study muon identification performance
- ✓ search for D→K π , K $\pi\pi\pi$, K $^{0}{}_{S}\pi\pi$, K $\pi\pi^{0}$
- → assess background levels, resolutions & relative efficiencies
- demonstrate capability to reconstruct first final states

~ 40 mins @ 10^{31} cm⁻² s⁻¹

Exploiting first muon trigger data

applying J/ ψ trigger with p_t-cut on single muon \rightarrow expect ~10⁶ J/ $\psi \rightarrow \mu\mu$ with 1 pb⁻¹

- ► Reconstruct $J/\psi \rightarrow \mu\mu$ and disentangle fraction of prompt and detached J/ψ 's
- ➤ discriminating variable:

$$t = \frac{dz}{p_z} \times M^{J/\psi} \approx \frac{d}{p} \times M^{J/\psi} = c\tau$$

 \succ study proper time resolution with prompt component

➤ Measure prompt J/ψ and bb cross section in a region not accessible to other collider experiments

 μ^+

 μ^{-}

PV

dz

Exploiting ~5 pb⁻¹ of data with full trigger

✓ 23k $B^0 \rightarrow D^*\mu\nu$

(~days of data taking)

LHCb THCp

Bd mass, GeV

 $B \rightarrow K^* \gamma$

- ➤ tagging studies with flavour specific modes
- ✓ 3.2k B⁺→J/ ψ K⁺
 - > selection does not require lifetime cut
 - \succ unbiased lifetime distribution to determine resolution
- ✓ 4.3k $B^0 \rightarrow D^-(K^- \pi^+ \pi^-) \pi^+$
 - \succ measure B⁰ lifetime
 - \blacktriangleright reach current precision (0.009 ps) with 60k events

reference channel for all radiative loop decays

- ✓ 2.3k $B \rightarrow J/\psi K^*$
 - \blacktriangleright exercise fit machinery for analysis of B_s \rightarrow J/ $\psi\phi$

✓ Select first 285 $B_s \rightarrow J/\psi \phi$

Exploiting ~0.5 fb⁻¹ of data with full trigger

(1/4 of a nominal year)

≻ measure $B_s - \overline{B_s}$ mixing phase ϕ_s in $B_s \rightarrow J/\psi(\mu\mu)\phi$

- ✓ Sensitive to New Physics effects in mixing
 - $\flat \phi_{s} = \phi_{s}(SM) + \phi_{s}(NP)$

→ in SM: $\phi_s = -2\beta_s = -\arg(V_{ts}^2) \sim -0.04$

- ✓ J/ $\psi \phi$ is not a pure CP eigenstate (2 CP even, 1 CP odd amplitude)
 - need to fit angular distributions of decay final states as function of proper time
- ✓ with 28'500 reconstructed $B_s \rightarrow J/\psi(\mu\mu)\phi$ signal events (before tagging)

 $\rightarrow \sigma_{stat}(\phi_s) \sim 0.06 \text{ with } 0.5 \text{ fb}^{-1}$

$$\begin{split} A_{CP}(t) &= \frac{\Gamma[\overline{B}_s(t) \to f] - \Gamma[B_s(t) \to f]}{\Gamma[\overline{B}_s(t) \to f] + \Gamma[B_s(t) \to f]} \\ A_{CP}(t) &= \frac{\eta_f \sin\phi_s \sin(\Delta m_s) t}{\cosh(\Delta \Gamma_s t/2) - \eta_f \cos\phi_s \sinh(\Delta \Gamma_s t/2)} \end{split}$$

$\eta_f = +, -1$ CP eigenstates

Exploiting ~0.5 fb⁻¹ of data with full trigger

\succ measure BR of rare decay $B_s \rightarrow \mu^+ \mu^-$

(1/4 of a nominal year)

4

3σ

5

6

Integrated Luminosity (fb-1)

7

8

9

3

2

1

LHCD THCD

2

з

Physics at LHC 2008

Conclusion

LHCb is a heavy flavour precision experiment searching for New Physics in CP-violation and rare decays The experiment is ready for data taking with first collisions Very first data can be exploited to validate the expected detector performance With fraction of a 1 years nominal data set LHCb can already perform important key measurments probing New Physic

