Higher order corrections in view of the LHC

Keith Ellis
Fermilab

Menu

- Theoretical setup.
- Status of α_{s} and parton distribution functions
- Necessity of NLO
- MCFM
- Calculation of tree diagrams
- Progress with calculation of one loop diagrams

QCD improved parton model

Hard QCD cross section is
represented as the convolution
of a short distance cross-
section and non-perturbative
QuickTime ${ }^{\text {TM }}$ and a parton distribution functions. TIFF (Uncompressed) decompressor are needed to see this picture.

Physical cross section is formally independent of $\mu_{\mathrm{F} \text { and }} \mu_{\mathrm{R}}$

Short-distance cross section

For a hard process the short distance cross section can be calculated
in various approximations.
Leading order (LO) tree graphs
Next-to-leading order (NLO)
Next-to-next_to_leading order (NNLO) $\quad \alpha_{s}{ }^{n+2}$
Current state of the art can calculate large number of loops
and small number of legs or a

smaller number of legs and a larger number of loops.

ICHEP 2006 world average

2006 World average $\alpha_{s}\left(M_{z}\right)=0.1175 \pm 0.0011$

Parton distribution functions

Measurement of the non-perturbative parton distributions at lower energies allow
extrapolations to higher values of μ and lower values of x using the DGLAP equation

QuickTime ${ }^{\text {TM }}$ and a

The evolution kernel is calculable as a perturbation series in α_{s}

QuickTime ${ }^{\text {TM }}$ and a
TIFF (Uncompressed) decompressor are needed to see this picture.

NNLO is known completely. (Moch et al, hep-ph/0403192)

Projected parton model uncertainties after HERAII

... and consequent improvement on uncertainty of int crocs certion

Dependence on unphysical scales

So the uncertainty in α_{S} is 1% and $\alpha_{S} \sim 10 \%$, and the uncertainty due to parton distributions is $\sim 10-20 \%$ (at least for the measured values of x).

Why can we not predict physical cross sections to $\sim 10-20 \%$?

We need NLO (or better)

In order to get $\sim 10 \%$ accuracy we need to include NLO.

- Less sensitivity to unphysical input scales, (eg. renormalization and factorization scales)
- NLO first approximation in QCD which gives an idea of suitable choice for μ.
- NLO has more physics, parton merging to give structure in jets, initial state radiation, more species of incoming partons enter at NLO.
- A necessary prerequisite for more sophisticated techniques which match NLO with parton showering.

Isn't it just an overall K-factor?

Sometimes.....

Z+jet production at the Tevatron
but not always

QuickTime ${ }^{\text {TM }}$ and a
TIFF (Uncompressed) decompressor are needed to see this picture.
$\begin{array}{lll}\mathrm{p}_{\mathrm{T}} & 50 & 100\end{array}$
2
NLO-solid, LOdasberoduction at the L

Influence of new processes at NLO

At NLO

QuickTime ${ }^{\text {TM }}$ and a
TIFF (Uncompressed) decompressor are needed to see this picture.

For this case the influence of incoming gluons is negative

MCFM overview

Monte Carlo for FeMtobarn processes. At LHC few of the cross sections are expressed in fb, so MCFM. Parton level cross sections predicted to NLO in α_{s}. Currently released version 5.2 , July 2007

Features-Less sensitivity to
unphysical μ_{R} and μ_{F}, better normalization for rates, fully differential distributions.
Shortcomings- low parton multiplicity (no showering), no hadronization, hard to model detector effects.
Work by John Campbell and Keith Ellis with appearances by guest celebrities, Fabio Maltoni,
Francesco Tramontano, Scott Willenbrock \& Giulia Zanderighi.

W+n jet rates from CDF

Both uncertainty on rates and deviation of Data/Theory from 1 are smaller tha other calculations. "Berends" ratio agrees well for all calculations, but unfortunately only available for $n \leq 2$ from MCFM.

Recent additions to MCFM

- WW+1jet (Campbell, RKE, Zanderighi, arXiv:0710.1832)
- H+2jet (Campbell, RKE, Zanderighi, hep-ph/0608194)
(Neither of these processes are yet included in the publically released code).

Higgs+2 jets at NLO

- Calculation performed using an effective Lagrangian, valid in the large m_{t} limit.

Three basic processes at lowest order.

Higgs +2 jets rapidity distribution versus WBF

- Shape of NLO result, similar to LO in rapidity.
- WBF shape is quite different at NLO.
- An irreducible background to WBF.

Ingredients for a NLO calculation

Example $\mathrm{e}^{+} \mathrm{e}^{-} \Rightarrow 2$ jets

- Born process LO
- Interference of one-loop with LO
- Real radiation (also contributes to the two jet rate in the region of soft or collinear emission).

What is the bottle-neck?

- Consider for example W+n jets. ($\mathrm{W}+4$ jets is a background to top production).
- $W+n(L O)$ and $W+(n+1)$-parton amplitudes known since 1989 Berends et al.
- Subtraction method understood 1980.

Ellis, Ross \& Terrano, Catani \& Seymour

- NLO parton evolution known since 1980.

Curci, Furmanski \& Petronzio

- Bottleneck is the calculation of one loop amplitudes. In fact only the one-loop amplitudes for $\mathrm{W}+1$ jet and $\mathrm{W}+2$ jets are known. Bern et al (1997); Campbell, Glover \& Miller (1997).

Tree graphs

The calculation of any tree graph is essentially solved.

- Berends-Giele recursion
- MHV based recursion $\}$ On-shell recursion methoo
- BCF on-shell recursion
- Comparison of methods

Berends-Giele recursion

Building blocks are non-gauge invariant color-ordered offshell currents. Off-shell currents with n legs are related to off-shell currents with fewer legs (shown here for the pure gluon case).

Despite the fact that it is constructing the complete set of Feynman diagrams, BG recursion is a very economical scher

Berends-Giele recursion

Kleiss and Kuijf showed in 1989 that the time for the calculation of gluonic amplitudes grows like N^{4} using Berends-Giele offshell recursion relations.

Economy comes from the fact that all previously calculated offshell currents are reused.

Comparison of speed for numerical evaluation

Tree level amplitude with n external gluons may be written as
QuickTime ${ }^{\text {TM }}$ and a
TIFF (Uncompressed) decompressor are needed to see this picture.

Leading color matrix element squared is given by
QuickTime ${ }^{\text {TM }}$ and a
TIFF (Uncompressed) decompressor
are needed to see this picture.
CPU time in seconds to calculate \mathcal{M}_{n} using the various methods

Conclusion on calculation of tree graphs

- Berends-Giele off-shell recursion is universal, fast enough and simple to program.

The calculation of one loop amplitudes

- The classical paradigm for the calculation of one-loop diagrams was established in 1979.
- Complete calculation of one-loop scalar integrals
- Reduction of tensors one-loop integrals to scalars.

Neither will be adequate for present-day purposes.

Basis set of scalar integrals

Any one-loop amplitude can be written as a linear sum of boxes, triangles, bubbles and tadpoles

In addition, in the context of NLO calculations, scalar higher point functions, can always be expressed as sums of box integrals. Passarino, Veltman - Melrose ('65)

- Scalar hexagon can be written as a sum of six pentagons.
-For the purposes of NLO calculations, the scalar pentagon can be written as a sum of five boxes.
- In addition to the 'tH-V integrals, we need integrals containing infrared and collinear divergences.

Scalar one-loop integrals

- 't Hooft and Veltman's integrals contain internal masses; however in QCD many lines are (approximately) massless. The consequent soft and collinear divergences are regulated by dimensional regularization.
- So we need general expressions for boxes, triangles, bubbles and tadpoles, including the cases with one or more vanishing internal masses.

Basis set of sixteen divergent box integrals

Example of box integral from qcdloop.fnal.gov

Basis set of 16 basis integrals allows the calculation of any divergent

Result given in the spacelike region. Analytic continuation as usual by $\mathrm{s}_{\mathrm{ij}} \Rightarrow \mathrm{s}_{\mathrm{ij}}+\mathrm{i} \varepsilon$

Limit $p_{3}{ }^{2}=0$ can be obtained from this result, (limit $p_{2}{ }^{2}=0$ cannot)

QCDLoop

- Analytic results are given for the complete set of divergent box integrals at http://qcdloop.fnal.gov
- Fortran 77 code is provided which calculates an arbitrary scalar box, triangle, bubble or tadpole integral.
- Finite integrals are calculated using the ff library of Van Oldenborgh. (Used also by Looptools)
- For divergent integrals the code returns the coefficients of the Laurent series $1 / \varepsilon^{2}, 1 / \varepsilon$ and finite.
- Problem of one-loop scalar integrals is completely solved numerically and analytically!

Determination of coefficients

of

scalar integrals
Feynman diagrams + Passarino-Veltman reduction cannot be the answer as the number of legs increases. There are too many diagrams with cancellations between them.

Semi-numerical methods based on unitarity may be the answer. Note however that to date the majority of complete n-leg calculations for $n>4$ are based on Passarino-Veltman.

Basic setup for one-loop diagrams, use of unitarity

$$
T^{\dagger}-T=-2 i T^{\dagger} T
$$

The use of unitarity allows us to recycle tree graph analytic results

$$
\begin{aligned}
-\left.i \operatorname{Disc} A_{4}(1,2,3,4)\right|_{s-\mathrm{cut}}=\int \frac{d^{4} p}{(2 \pi)^{4}} 2 \pi \delta^{(+)} & \left(\ell_{1}^{2}-m^{2}\right) 2 \pi \delta^{(+)}\left(\ell_{2}^{2}-m^{2}\right) \\
& \times A_{4}^{\text {tree }}\left(-\ell_{1}, 1,2, \ell_{2}\right) A_{4}^{\text {tree }}\left(-\ell_{2}, 3,4, \ell_{1}\right),
\end{aligned}
$$

Decomposing one-loop N -point amplitudes in terms of master integrals

$\left.\mathcal{A}_{N}\left(p_{1}, p_{2}, \ldots, p_{N}\right)=\int[d]\right] \mathcal{A}\left(p_{1}, p_{2}, \ldots, p_{N} ; l\right)$

TIFF (Uncompressed) decompressor are needed to see this picture.

$$
\begin{aligned}
& d_{i}=\left(l+q_{i}\right)^{2}-m_{i}^{2}=\left(l-q_{0}+\sum_{j=1}^{i} p_{i}\right)^{2}-m_{i}^{2} \\
& \mathcal{A}_{N}\left(\left\{p_{i}\right\}\right)=\sum d_{i j k}+\sum c_{i j}+\infty+\sum b_{i}>+
\end{aligned}
$$

Any Feynman amplitude can be expressed as a sum of scalar boxes, triangles, bubbles and tadpoles (not shown).

Decomposing in terms of ■4...

- Without the integral sign, the identification of the coefficients is straightforward.
- Determine the coefficients of a multipole rational function

Algebraic reduction, subtraction terms

- Ossola, Papadopoulos and Pittau showed that there is a systematic way of calculating the subtraction terms at the integrand level.
- We can re-express the rational function in an expansion over $4,3,2$, and 1 propagator terms.
- The residues of these pole terms contain the I-independent master integral coefficients plus a finite number of spurious term

[^0]
Residues of poles and Define residue function unitarity cuts

We can determine the d-coefficients, then the c-coefficients and so on

The box residue

$$
\begin{gathered}
\operatorname{Res}_{2346}\left(\mathcal{A}_{6}\left(l^{ \pm}\right)\right)=\mathcal{M}_{4}^{(0)}\left(l_{6}^{ \pm} ; p_{1}, p_{2} ;-l_{2}^{ \pm}\right) \times \mathcal{M}_{3}^{(0)}\left(l_{2}^{ \pm} ; p_{3} ;-l_{3}^{ \pm}\right) \mathcal{M}_{3}^{(0)}\left(l_{3}^{ \pm} ; p_{4} ;-l_{4}^{ \pm}\right) \\
\times \mathcal{M}_{4}^{(0)}\left(l_{4}^{ \pm} ; p_{5}, p_{6} ;-l_{6}^{ \pm}\right)=\bar{d}_{i j k l}(l)=d_{i j k l}+\tilde{d}_{i j k l} l \cdot n_{1}
\end{gathered}
$$

$$
\begin{aligned}
d_{i j k l} & =\frac{\operatorname{Res}_{i j k l}\left(\mathcal{A}_{N}\left(l^{+}\right)\right)+\operatorname{Res}_{i j k l}\left(\mathcal{A}_{N}\left(l^{-}\right)\right)}{2} \\
\tilde{d}_{i j k l} & =\frac{\operatorname{Res}_{i j k l}\left(\mathcal{A}_{N}\left(l^{+}\right)\right)-\operatorname{Res}_{i j k l}\left(\mathcal{A}_{N}\left(l^{-}\right)\right)}{2 i \sqrt{V_{4}^{2}-m_{l}^{2}}}
\end{aligned}
$$

The residues of the poles = sum over factorized tree amplitudes

Result for six gluon amplitude

- Results shown here for the cut-constructible part
- The relative error for the finite part of the 6-gluon amplitude compared to the analytic result, for the (+ + ----) helicity choice. The horizontal axis is the log of the relative error, the vertical axis is the number of events in arbitrary linear units.

- For most events the error is less than 10^{-6}, although there is a tail extending to higher error, which can be troatod hy/icinc hishor

Numerical Unitarity Method in Ddimensions

If we can control the complete D dependence of the internal lines, we can obtain the complete amplitude, not just the cut-constructible part.
i) spin-polarizations live in D_{s}
ii) loop momentum live in $D . \quad\left(D_{s}>D\right)$

$$
\begin{gathered}
\mathcal{A}_{\left(D, D_{s}\right)}\left(\left\{p_{i}\right\},\left\{J_{i}\right\}\right)=\int \frac{d^{D} l}{i(\pi)^{D / 2}} \frac{\mathcal{N}^{\left(D_{s}\right)}\left(\left\{p_{i}\right\},\left\{J_{i}\right\} ; l\right)}{d_{1} d_{2} \cdots d_{N}} . \\
\sum_{i=1}^{D_{s}-2} e_{\mu}^{(i)}(l) e_{\nu}^{(i)}(l)=-g_{\mu \nu}^{\left(D_{s}\right)}+\frac{l_{\mu} b_{\nu}+b_{\mu} l_{\nu}}{l \cdot b}, \\
l^{2}=\bar{l}^{2}-\tilde{l}^{2}=l_{1}^{2}-l_{2}^{2}-l_{3}^{2}-l_{4}^{2}-\sum_{i=5}^{D} l_{i}^{2}
\end{gathered}
$$

Two key features

Dependence on Ds is linear

$$
\mathcal{N}^{\left(D_{s}\right)}(l)=\mathcal{N}_{0}(l)+\left(D_{s}-4\right) \mathcal{N}_{1}(l)
$$

- Choose two integer values $D_{s}=D_{1}$ and $D_{s}=D_{2}$ to reconstruct the full D_{s} dependence.
- Suitable for numerical implementation.
- $D_{s}=4-2 \varepsilon$ ' t Hooft Veltman scheme, $D_{s}=4$ FDHS

The loop momentum effectively has only 4+1 component

$$
N(I)=N\left(I_{4}, \mu^{2}\right) \quad \mu^{2}=-I_{5}^{2}-\ldots-I_{D}^{2}
$$

maximum 5 constraints: we need to consider also pentagon cuts.

Reduction in D-dimensions

The parametrization of the N -particle amplitude

$$
\begin{aligned}
& \frac{\mathcal{N}^{\left(D_{s}\right)}(l)}{d_{1} d_{2} \cdots d_{N}}=\sum_{\left[i_{1} \mid i_{5}\right]} \frac{\bar{e}_{i_{1} i_{2} i_{3} i_{4} i_{5}}^{\left(D_{i_{1}}\right)}(l)}{d_{i_{2}} d_{i_{3}} d_{i_{4}} d_{i_{5}}}+\sum_{\left[i_{1} \mid i_{4}\right]} \frac{\bar{d}_{i_{1} i_{2} i_{3} i_{4}}^{\left(D_{i_{1}}\right)}(l)}{d_{i_{2}} d_{i_{2}} d_{i_{3}} d_{i_{4}}} \\
& +\sum_{\left[i_{1} \mid i_{3}\right]} \frac{\bar{c}_{i_{1} i_{2} i_{3}}^{\left(D_{s}\right)}(l)}{d_{i_{1}} d_{i_{2}} d_{i_{3}}}+\sum_{\left[i_{1} \mid i_{2}\right]} \frac{\bar{b}_{i_{1} i_{2}}^{\left(D_{s}\right)}(l)}{d_{i_{1}} d_{i_{2}}}+\sum_{\left[i_{1} \mid i_{1}\right]} \frac{\bar{a}_{i_{1}}^{\left(D_{s}\right)}(l)}{d_{i_{1}}}
\end{aligned}
$$

Parametrization of the residues

Pentuple residue:

QuickTime ${ }^{\text {TM }}$ and a
TIFF (Uncompressed) decompressor are needed to see this picture.
in

Box residue: $\quad \bar{d}_{i j k n}^{\mathrm{FDH}}(l)=d_{i j k n}^{(0)}+d_{i j k n}^{(1)} s_{1}+\left(d_{i j k n}^{(2)}+d_{i j k n}^{(3)} s_{1}\right) s_{e}^{2}+d_{i j k n}^{(4)} s_{e}^{4}$

Three extra structures for triple, three
for double and zero for single cuts, only even powers of

Extension to full amplitude

- Keep dimensions of virtual unobserved particles integer and perform calculations in more than one dimension.
- Arrive at non-integer values $\mathrm{D}=4-2 \varepsilon$ by polynomial interpolation.
- Results for six-gluon amplitudes agree with original Feynman diagram calculation of RKE, Giele, Zanderighi.

Scaling property of tree and loop amnlitıinec

Results for the complete one-loop 20 gluon amplitude!

Satisfy a number of nontrivial checks.

Summary

- $\alpha_{\mathrm{s}}\left(\mathrm{M}_{\mathrm{z}}\right)$ is known to $<1 \%$
- Parton distributions are known well enough to predict most cross sections to 20%, ($0.005<x<0.3$)
- Calculation of tree graphs is a solved problem, for all practical purposes. Berends-Giele recursion is numerically the best method.
- Open theoretical problem is thus the calculation of one-loop amplitudes. There is currently great intellectual fervor regarding the calculation of one-loop corrections.
- Unitarity based methods have achieved important results for one-loop diagrams, but not all semi-numerical methods have been tested in real physical calculations.
- Remaining challenge is to assemble into a program with efficient phase space sampling.
- The hope is to have several semi-automatic methods of calculating oneloop amplitudes (time scale about 1 year).

[^0]: TIFF (Uncompressed) ${ }^{\text {Quind }}$ and TIFF (Uncompressed) decompresso
 are needed to see this picture.

