# First physics with the ATLAS detector

Dirk Zerwas
LAL Orsay
On behalf of the ATLAS Collaboration

Physics at LHC 2008 Split, Croatia October 2, 2008

- Introduction
- expected performance
- first physics
- conclusions



### Introduction

- Status of the ATLAS detector → Peter Jenni
- Commissioning of the ATLAS detector → Manuella Vincter

### First physics = performance and calibration

**Highlight expected performance:** 

- electrons, muons, jet/ETmiss, tau, b-tagging, trigger
- low-mass resonances,  $Z \rightarrow ee, \mu\mu, \tau\tau$  Z+jets, tt

#### First physics beyond performance:

• new physics in autocalibrated/large cross section signals

#### **Basis of the studies: CSC**

- large scale production
- simulation and reconstruction of more than 25 million events
- single particles to complex physics signatures
- most precise detector description
- volontary introduction of imperfections (alignment+additional material)
- test of analysis model

EW: Z/W cross sections

- → Lucia di Ciaccio (LHC)
- → Kristin Lohwasser (ATLAS)

QCD/top:

→ Frank-Peter Schilling





### **Expected performance: Electrons**

talk by Emmanuel Turlay, September 30

| Cuts          | $E_T > 17~{ m GeV}$ |                 |                     |  |
|---------------|---------------------|-----------------|---------------------|--|
|               | Efficiency (%)      |                 | Jet rejection       |  |
|               | $Z \rightarrow ee$  | b,c ightarrow e |                     |  |
| Loose         | 87.96 ± 0.07        | $50.8 \pm 0.5$  | 567 ± 1             |  |
| Medium        | $77.29 \pm 0.06$    | $30.7 \pm 0.5$  | $2184 \pm 13$       |  |
| Tight (TRT.)  | $61.66 \pm 0.07$    | $22.5 \pm 0.4$  | $(8.9 \pm 0.3)10^4$ |  |
| Tight (isol.) | $64.22 \pm 0.07$    | $17.3 \pm 0.4$  | $(9.8 \pm 0.4)10^4$ |  |

Large QCD cross section at LHC: 10<sup>5</sup> rejection reached for 64% efficiency: ok

First physics for electrons:

- copious source of low-PT electrons: J/ψ/Upsilon
- 100pb<sup>-1</sup>: Z→ee for intercalibration and tag&probe





Zee long range const term  $100pb^{-1}$ :  $0.4\% \ (\oplus \ 0.5\%)$  OK



Efficiency Z $\rightarrow$ ee tag& probe: Good agreement with MCtruth ( $\pm 0.1\%$ ,  $\pm 1.5\%$ )

### **Expected performance: Muons**



**Combination of ID and MuonSpectrometer tracks** 

- Good efficiency PT>=4GeV with low fake rate
- Good coverage in η

### First physics:

- Z→µµ tag&probe
- $100 \text{pb}^{-1} \rightarrow \epsilon \pm 0.08\% \text{ (stat) } \pm 1\% \text{ (syst)}$
- energy scale with 50pb-1: ±0.5GeV (50GeV muons)
- initial misalignment 1mm and 1 mrad, no bias but 3x broader distribution (after aligment: 50µm)





## **Expected performance: jets**

#### talk by Damir Lelas September 30

#### **Calorimeter based jets:**

- Topological clustering
- Calibration (local)
- Jet finding kt/cone
- Jes corrections (noise/pileup)
- Refined jets (underlying event)

Jet energy scale ~ % in the barrel

Photon + jets: large statistics ~% scale precision

| Error for 10 pb <sup>-1</sup> |  |  |  |  |
|-------------------------------|--|--|--|--|
| 0.2%                          |  |  |  |  |
| 0.2%                          |  |  |  |  |
| 0.4%                          |  |  |  |  |
| 0.4%                          |  |  |  |  |
| 0.7%                          |  |  |  |  |
| 0.4%                          |  |  |  |  |
| 1.7%                          |  |  |  |  |
| 4%                            |  |  |  |  |
| 19%                           |  |  |  |  |
|                               |  |  |  |  |



Z→ee+1jet: 200pb<sup>-1</sup> clear signal  $\rightarrow$  Z+jet calibration



# **Expected performance: ETmiss**

ETmiss at EM energy scale ~30% refined with

- muons
- electrons
- jets

ETmiss scale ~ 5%

**ETmiss resolution 0.57√E** 

First check:  $Z\rightarrow \tau\tau$  energy scale 2%







## **Expected performance: Taus**



calorimeter based tau-ID

#### Two approaches:

- calorimeter based
- track based
- efficiencies: 30% for jet-rejection ~10<sup>3</sup>

#### First physics:

- 100pb<sup>-1</sup>
- W  $\rightarrow \tau v$
- $Z \rightarrow \tau \tau \rightarrow l + had$
- clear signal for W and Z in tau channel!



ETmiss > 60GeV



# **Expected performance: b-tagging**

#### b-tagging:

- 60% efficiency
- JetProb: rejection at least 30
- soft-lepton tagging (later)
- IP3D (long. & transverse IP): rejection 60
- secondary vertex: rejection 150

#### in-situ calibration of b-tagging:

- tt: good agreement MCtruth and "MCData"
- **5-10%** precision
- muon+jets with trigger prescaled
- 50 pb<sup>-1</sup> necessary, valid <80GeV







# **Expected performance: Trigger**



### Subset of Trigger Menu for 10<sup>31</sup> cm<sup>-2</sup>s<sup>-1</sup>

| Signature                        | L1 rate (Hz)    | HLT rate (Hz) | Comments                                                  |
|----------------------------------|-----------------|---------------|-----------------------------------------------------------|
| Minimum bias                     | Up to 10000     | 10            | Pre-scaled trigger item                                   |
| e10                              | 5000            | 21            | $b,c  ightarrow e,W,Z$ , Drell-Yan, $t\overline{t}$       |
| 2e5                              | 6500            | 6             | Drell-Yan, $J/\psi$ , $\Upsilon$ , $Z$                    |
| γ20                              | 370             | 6             | Direct photons, $\gamma$ -jet balance                     |
| 2γ15                             | 100             | < 1           | Photon pairs                                              |
| μ10                              | 360             | 19            | $W, Z, t\bar{t}$                                          |
| 2μ4                              | 70              | 3             | <i>B</i> -physics, Drell-Yan, $J/\psi$ , $\Upsilon$ , $Z$ |
| $\mu$ 4 + J/ $\psi$ ( $\mu\mu$ ) | 1800            | < 1           | B-physics                                                 |
| j120                             | 9               | 9             | QCD and other high- $p_T$ jet final states                |
| 4j23                             | 8               | 5             | Multi-jet final states                                    |
| τ20i + xE30                      | 5000 (see text) | 10            | $W$ , $t\bar{t}$                                          |
| τ20i + e10                       | 130             | 1             | Z  ightarrow 	au 	au                                      |
| τ20i + μ6                        | 20              | 3             | Z  ightarrow 	au 	au                                      |

**Total rates in budget!** 

- sharp turn-on curves
- differential cross section for jets

10<sup>2</sup>

10<sup>3</sup> E<sub>T</sub> of leading jet (GeV)

## Standard model: top quark

The LHC top quark factory

→semi-leptonic top quark events
no b-tagging used

#### First physics:

- 100 pb<sup>-1</sup> clear signal even with QCD bg x2
- signal purity for the muon/electron channel 80%



Integrated luminosity [pb-1]



 $\Delta \sigma / \sigma = 7\% \text{ (stat)} \pm 15\% \text{ (syst)} \pm 3\% \text{ (pdf)} \pm 5\% \text{(lumi)}$ 

## New physics: exotics

### First discovery physics:

- extra gauge bosons eg. Z', W'
- necessitates electron/muon ID
- ETmiss (W')
- alignment (seen in Z already) 1mm
- typical limits currently 500GeV-1TeV

Z': 100pb<sup>-1</sup> ~1.2-1.5TeV

W': 100pb⁻¹ ~2TeV

Z' Discovery potential







W': 10 pb<sup>-1</sup> sensitivity 1TeV Combines ETmiss and e/μ

Electron channel alone: 100 pb<sup>-1</sup> sensitivity 1TeV

# **New physics: Supersymmetry**

### Large cross sections for gluinos and squarks:

- multi-jet + large ETmiss (+leptons)
- necessitates understanding of all components

#### **Define effective mass:**

- sum of jet PT and ETmiss
- require one lepton
- less statistics, but cleaner





#### **Sensitivity:**

- 10pb<sup>-1</sup> ~400GeV sensitivity=TeVatron
- 1 fb<sup>-1</sup>  $\sim$  1.5TeV (all jets)
- 1 fb<sup>-1</sup>  $\sim$  1TeV (1lepton + jets)

### **Conclusions**

- ATLAS is well prepared for first physics
  - electrons (photons)
  - muons
  - jet
  - ETmiss
  - tau
  - b-tagging
- eagerly awaiting next year at 10 TeV (or more) to find:
  - the standard model
  - exotics
  - supersymmetry
  - or ?

