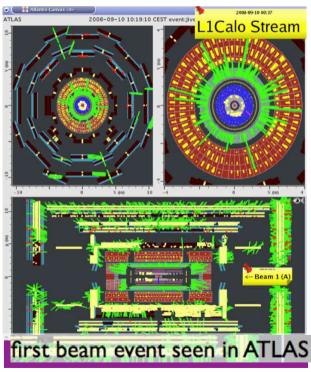
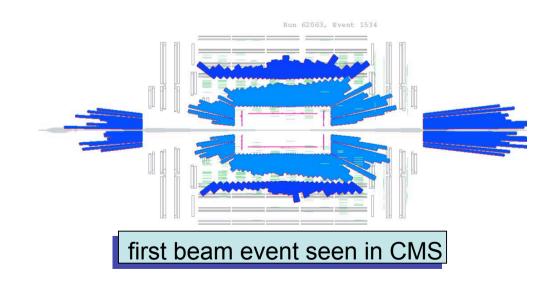
Electroweak physics at LHC


Lucia Di Ciaccio



Université de Savoie & CNRS/IN2P3 On behalf of the ATLAS & CMS Collaborations

> Physics @ LHC - 2008 Split, Croatia

Large number of topics --> need to make a (personal) choice :

Outline

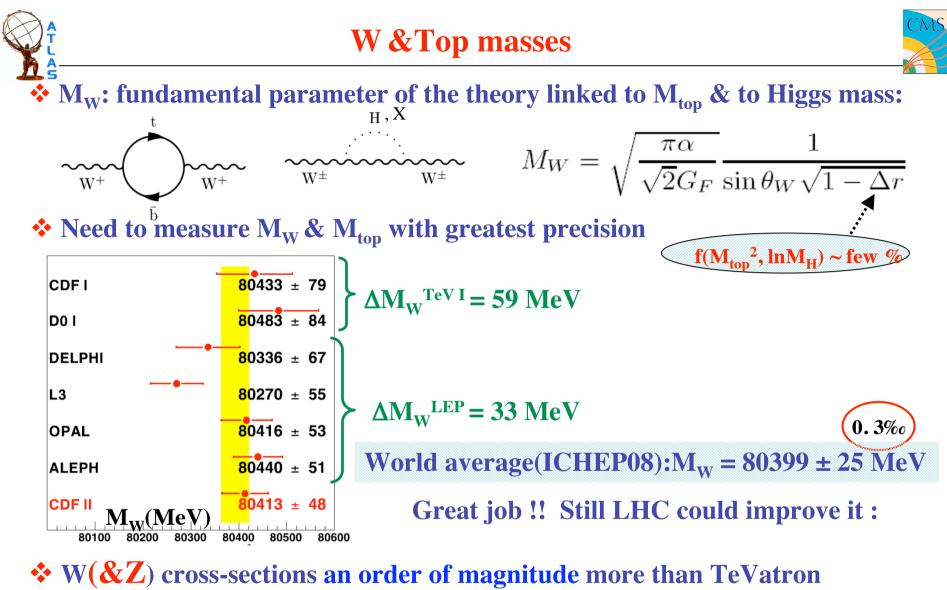
• W mass

• Top mass

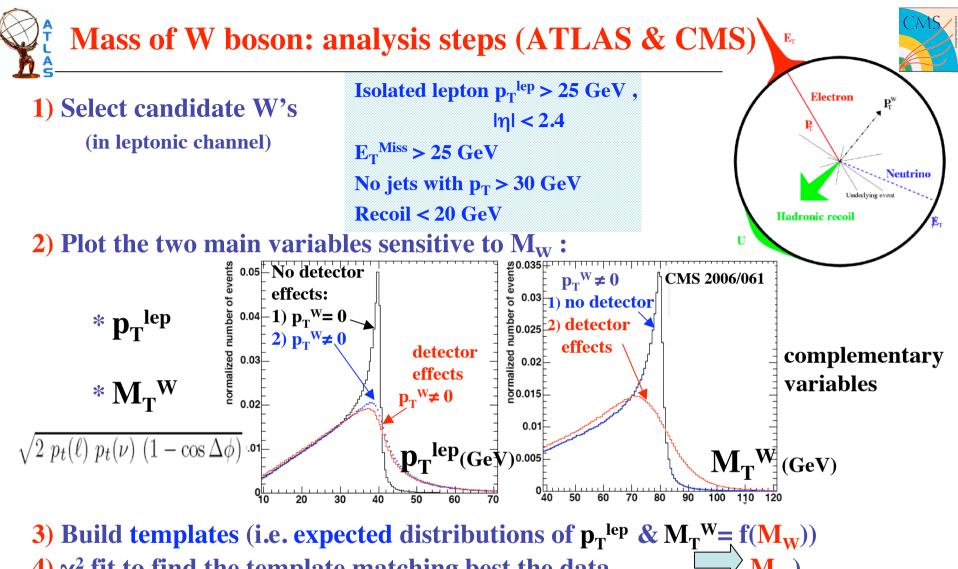
• Forward Backward asymmetry in Z decay

Associated production of Gauge Bosons

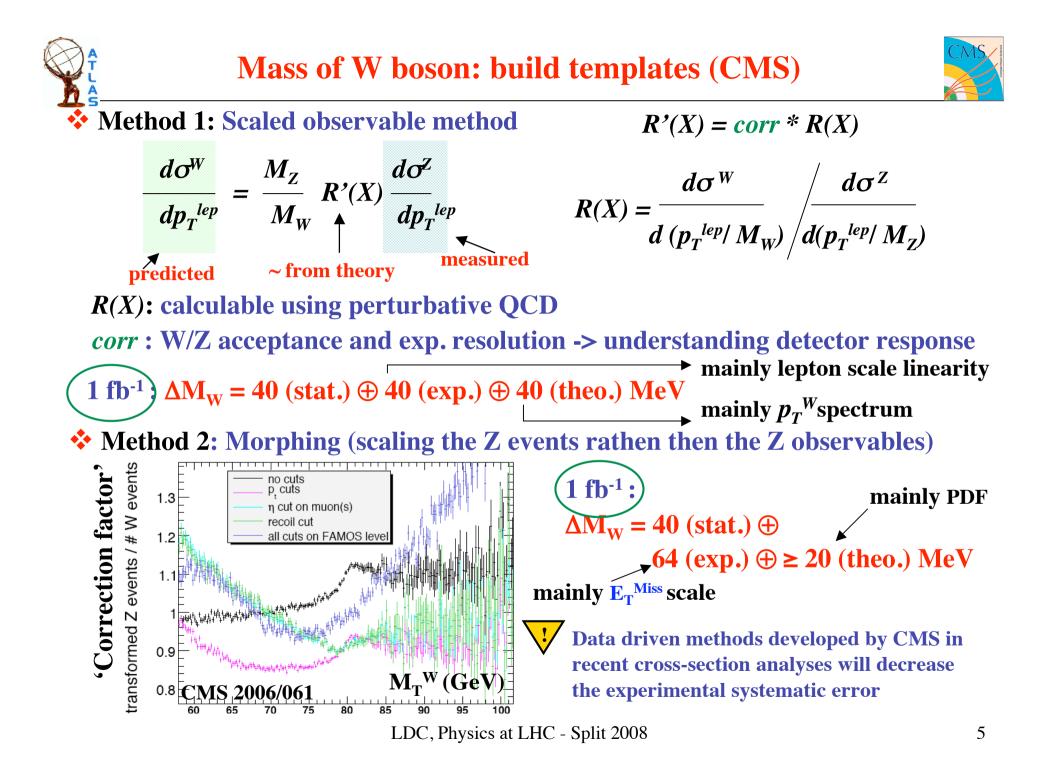
Current EW theory successfully tested at present energies Aim @ LHC : deeper understanding in view of : * tightening indirect constraints (M_W, M_{top})


* search for deviations (couplings)

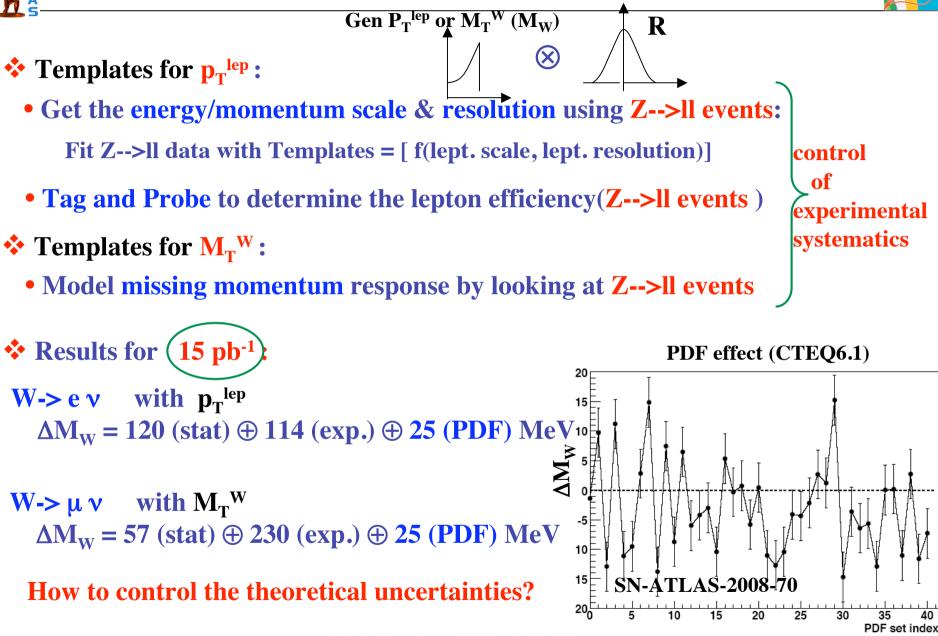
* understanding and calibrating detectors(i.e. see


Each experiment @ LHC: 'Low' lumi 10 fb⁻¹/y 'High' lumi 100 fb⁻¹/y TeVatron has collected so far ≈ 4.5 fb⁻¹

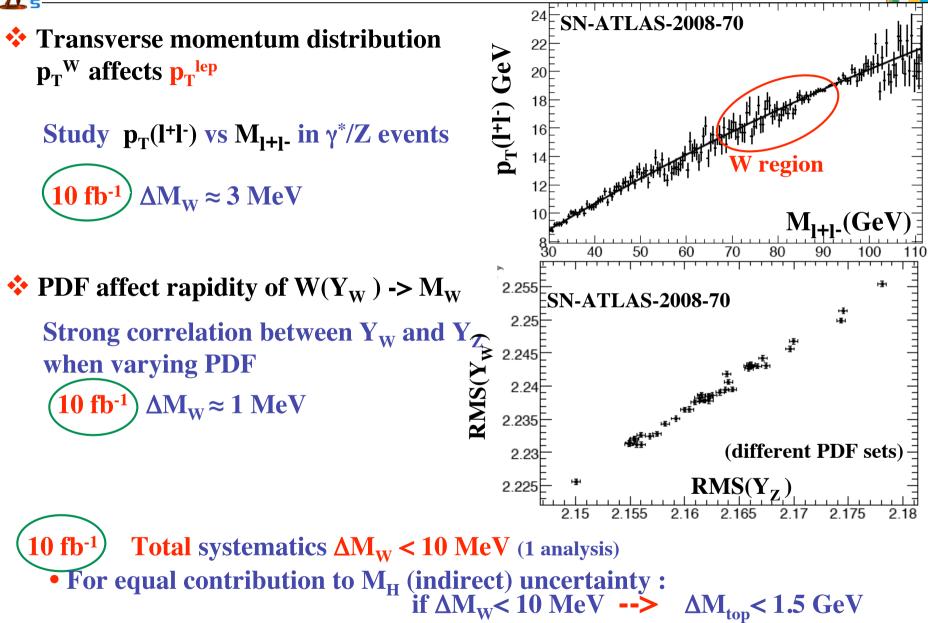
LDC, Physics at LHC - Split 2008


K. Lohwasser talk)

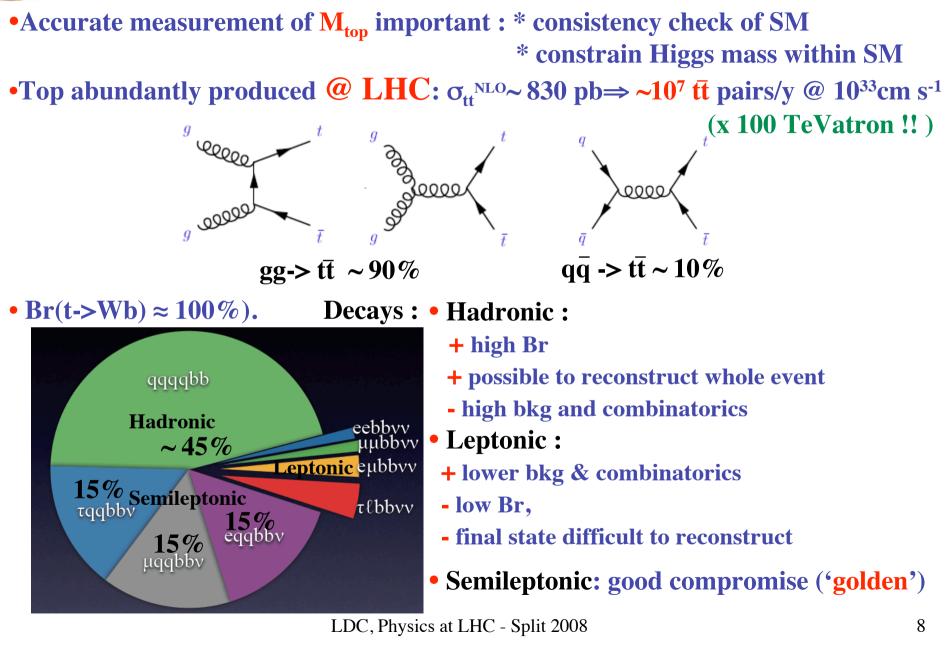
σ_{Wlv}^{NNLO 14 TeV} ~ 20 nb → 1 fb⁻¹ gives ~ 4 000 000 W events (ε_{sel}~20%) *** Design peak luminosity ~ an order of magnitude more than TeVatron**



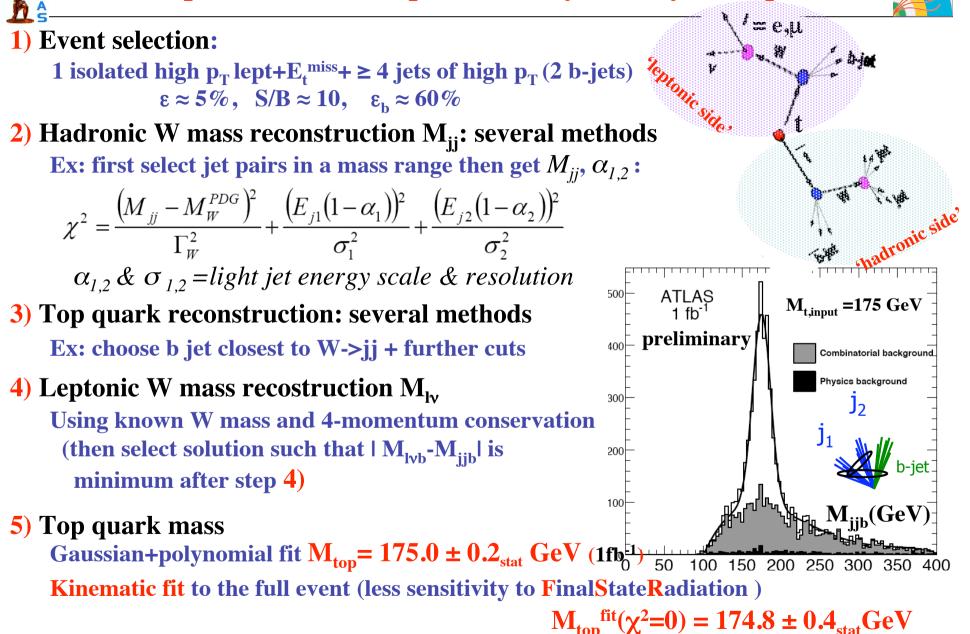
- 4) χ^2 fit to find the template matching best the data
- ***** Z events play a crucial role: reduce experimental & theoretical uncertainties * Z events 'modified' and used to build templates (CMS) * Z events used to tune W MC (ATLAS)
 - LDC, Physics at LHC Split 2008



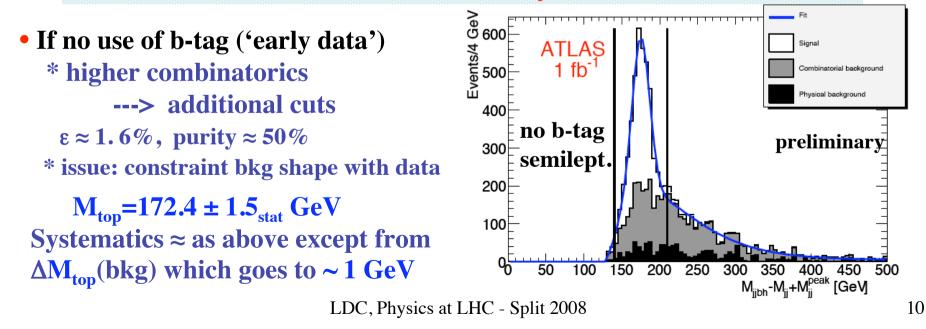
LDC, Physics at LHC - Split 200 -



Mass of W boson: main theoretical uncertainties

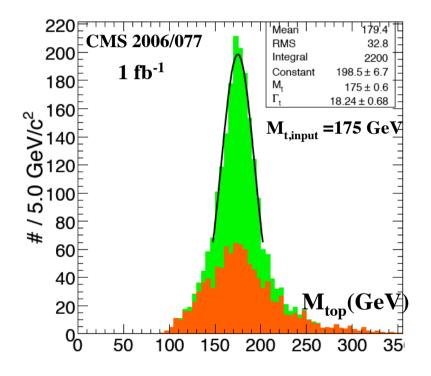


Top Mass in semileptonic decays: analysis steps


Top Mass in semileptonic decays: systematics

Systematic uncertainty	χ^2 minimization method	
Light jet energy scale	0.2 GeV/%	N
b jet energy scale	0.7 GeV/%	jε
ISR/FSR	$\simeq 0.3 \text{ GeV}$:
b quark fragmentation	$\leq 0.1 \text{ GeV}$	Ī
Background	negligible	
Method	0.1 to 0.2 GeV	

Aost important systematics : et enegy scale (JES) of * b-jet (1 fb⁻¹ ΔM_{top}(b-JES)≈1-3.5 GeV depending on b-JES≈1-5%)

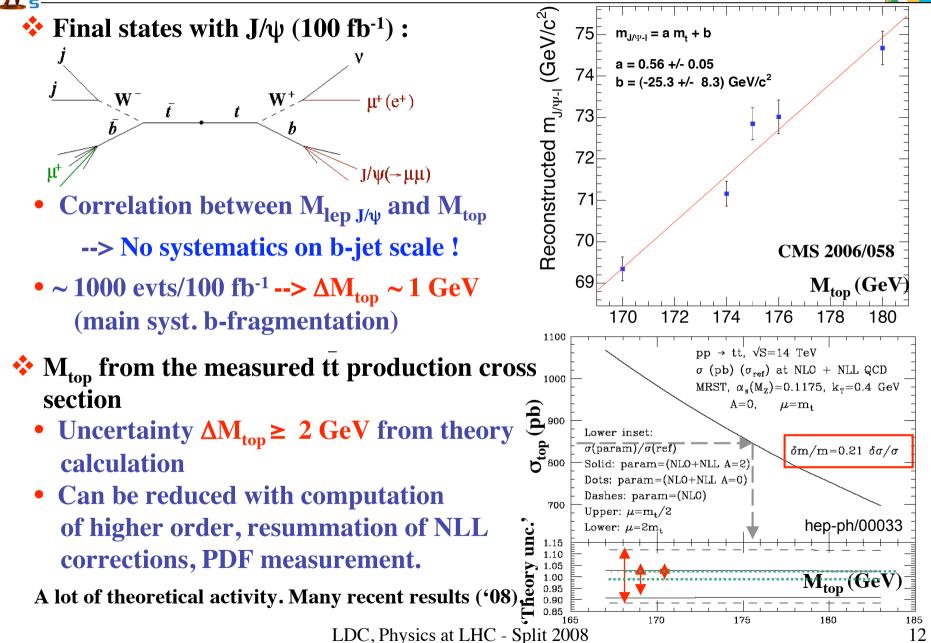

@LHC (1 fb⁻¹, 1 analysis) : $M_{top} = 175.0 \pm 0.2_{stat} \pm 1.0_{syst}$ GeVCurrent value (TeV ICHEP2008): $M_{top} = 172.4 \pm 0.7_{stat} \pm 1.0_{sys}$ GeV

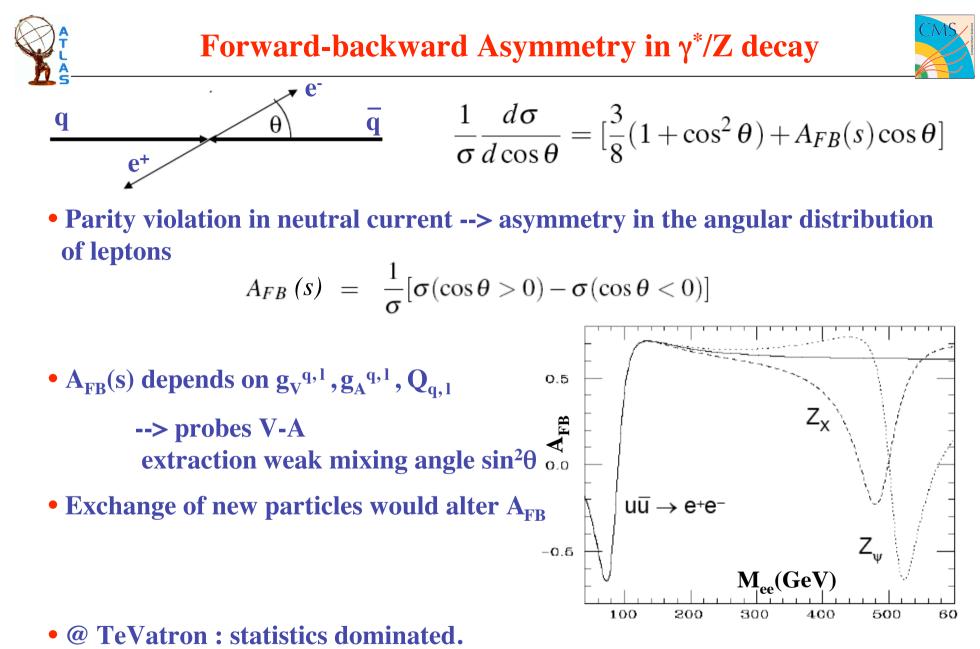
Top Mass fully hadronic & Top Mass di-leptonic decays

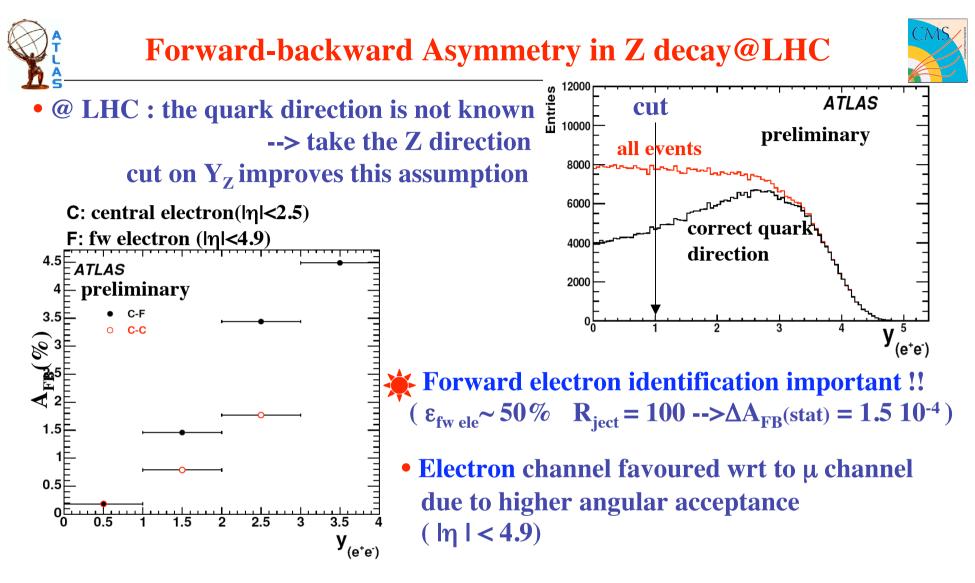
StartingS/B < 10^{-6} SelectionS/B $\approx 1/9$ $\epsilon = 2.7\%$ Likelihood on masses and anglesto perform the pairing + top choice

M_{top}=175.0 ± 0.6(stat) ± 4.2(syst) GeV Systematics: JES & ISR/FSR QCD background Starting S/B \approx 5*10⁻³

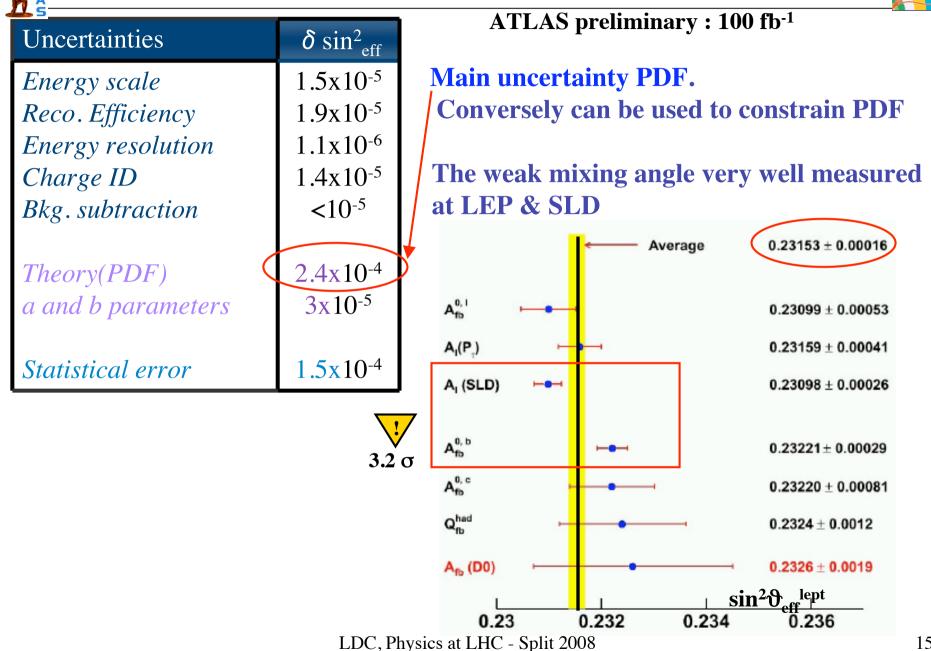
Kinematical reconstruction of event pairing with likelihood


 $S/B \approx 12$ $\epsilon = 1.2\%$ §100 CMS 2006/077 Legend events / 9.0 1 fb⁻¹ Signal Zjets 80 Diboson * ttbar non dilepton 60 M_{t,input} =175 GeV 40 20 M_{ton}(GeV 120 140 160 180 200 220 240 260 280

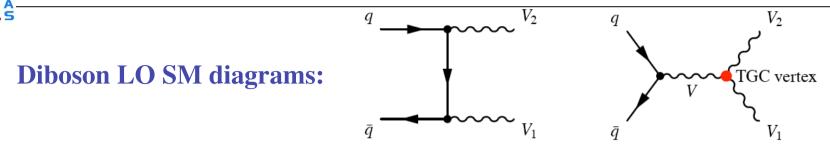

 $M_{top}=178.5 \pm 1.5 \text{ (stat)} \pm 2.9 \text{(syst) GeV}$ Main systematics: JES, ISR/FSR


Top Mass : additional methods

Major uncertainties : PDF, detector resolution


• Extraction of weak mixing angle $\sin^2 \vartheta$ around the Z pole (85 <M_{ee} < 97 GeV) :

 $A_{FB} = b \{ a - sin^2 \vartheta_{eff}^{lept} \}$ with a and b from MC (a = 0.23±0.03 b = 1.8±0.3)


sin² ϑ_{eff}^{lept} **@LHC**

TGC = **T**riple **G**auge **C**oupling = Self interaction among 3 gauge bosons (V)

- Direct test of non-Abelian structure of SM (demonstrated @ LEP) at the highest energy $q \bar{q}' \rightarrow W^{(*)} \rightarrow W \gamma : WW \gamma$
- •If no Higgs found -> dibosons important in understanding EWSB
- Background for Higgs & New Physics
- $q \bar{q} \rightarrow Z / \chi^{(*)} \rightarrow Z Z : Z Z \chi, Z Z Z$ • 'Anomalies' appear as enhanced rates at high p_T^V or $M_T(VV)$ & changes in angular distributions
- All diboson processes already measured @ TeVatron (in leptonic channels), improvements expected @ LHC:
 - **1)** cross-sections a factor ~ 10 higher
 - 2) higher energy allows to explore the most favorable kinematic region

Not permitted in SM

 $q \bar{q}' \rightarrow W^{(*)} \rightarrow WZ : WWZ$

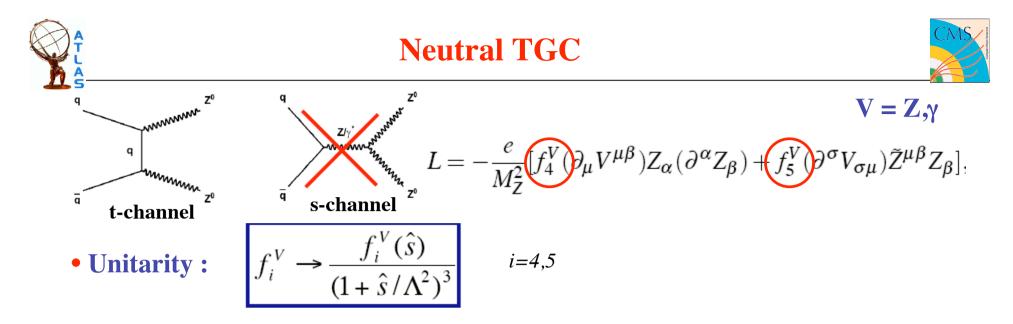
 $q \bar{q} \rightarrow Z / \gamma^{(*)} \rightarrow WW : WW \gamma, WWZ$

 $q \,\overline{q} \to Z / \gamma^{(*)} \to Z \,\gamma : Z Z \,\gamma, Z \,\gamma \gamma$

Associated production of Gauge Bosons : WZ $\sigma(SM)^{NLO} \approx 55 \text{ pb}$ Events / 2.5 GeV l = e, μ CMS WZ 300 pb⁻¹ 14 EWK-2008-003 Z+jets 12 W Zγ 10 Z Zbb $l^{+} = e, \mu$ $l = e, \mu$ q 8⊢ ΖZ ttbar+jets • $\varepsilon_{\text{trigger}} = 98\%$ W+jets • \geq 3 high p_T isolated leptons (e, μ) + M_{II}(GeV) cuts on $M_{Z \text{ candidate}}$ and on $M_{TW \text{ candidate}}$ 50 90 100 110 120 60 70 80 • --> 300 pb⁻¹: $N_{signal}^{MC} = 34.9 \pm 0.5$ S_L 14 $N_{signal}/N_{bkg} = 2.6$ $^{\rm L}_{95\%} = N_{\rm signal} / \sqrt{N_{\rm bkg}}$ 12 68% C.L 10 • ZZ&Zy bkg (31% of bkg) tt,W+jets bkg(20% of bkg) from MC • Data driven method to estimate Z+jet (main bkg) $N_{signal}^{Pseudo-data} = 33.0 \pm 3.5$ CMS EWK-2008-003 • Main syst.: lumi (10%), M_{TW} cut (10%) 0.45 0.15 0.20.250.3 0.35 0.4 Luminosity (fb⁻¹)

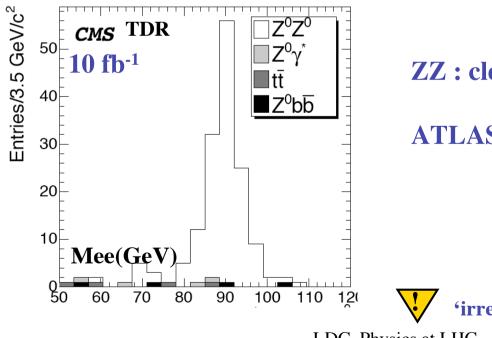
• 14 possible WWZ and WW γ couplings; usually use 5 independent, CP conserving, EM gauge invariance preserving couplings: $g_1^Z, k_\gamma, k_Z, \lambda_\gamma, \lambda_Z$

• 5 'Anomalous Couplings' (AC) :


$$\Delta g_1^Z \equiv g_1^Z - 1, \quad \Delta \kappa_\gamma \equiv \kappa_\gamma - 1, \quad \Delta \kappa_Z \equiv \kappa_Z - 1 \quad \lambda_\gamma, \text{ and } \lambda_Z.$$

in SM : $\Delta g_1^Z = 0, \quad \Delta k_\gamma = \Delta k_Z = 0, \quad \lambda_\gamma = \lambda_Z = 0$
 λ_V grow as \hat{S} (= invariant diboson mass) --> enhanced sensitivity @ LHC
WW more sensitive to Δk_V (grows as \hat{S}) than WZ & WY (grows as $\sqrt{\hat{S}}$)
WZ more sensitive to Δg_1^Z than WW --> complementarity

- To avoid unitarity violation @ high energy --> introduce a cutoff scale Λ replacing $\alpha \rightarrow \frac{\alpha}{(1+\hat{s}/\Lambda^2)^n}$ n = 2 $(\alpha \equiv \Delta g_1^{\ Z}, \Delta k_{\gamma/Z}, \lambda_{\gamma/Z})$
- To extract AC :


fits to total cross-sections and differential distributions (i.e. E_T^{γ} , p_T^{Z} , M_T^{VV} , sensitivity at high values)

Angular distribution have additional resolving power - not used here LDC, Physics at LHC - Split 2008

ZZ : $\sigma^{NLO}(SM) \sim 20$ pb [t-channel, s-channel suppressed O(10⁻⁴)]

ZZ : clean signal: 4 isolated leptons

ATLAS (1 fb⁻¹) $N_{sig} = 17 \pm 0.5$ $N_{bkg} = 2 \pm 0.2$ $\epsilon = 7.7\%$ S = 6.8

'irreducible' bkg for H->4l

- **@LHC** with 0.1 fb⁻¹ and 20% systematic uncertainties, SM signal of WW, WZ, Wy, Zy established with significance S (=N/ \sqrt{B}) better than 5 σ (1 fb⁻¹ for ZZ)
- Systematics (lumi, ϵ_{lept} , PDF, factorization scale) will start to dominate the cross-sections uncertainties from 5-30 fb⁻¹
- 95% CL limit on AC (Λ =2 TeV) 10 fb⁻¹ (~10 x better than present CDF 2 fb⁻¹)

Diboson,	λ_Z	$\Delta \kappa_Z$	Δg_1^Z	$\Delta\kappa_{\gamma}$	λ_{γ}
WZ, (M_T) $W\gamma$, (p_T^{γ}) WW, (M_T)	[-0.015, 0.013]	[-0.035, 0.073]	[-0.011, 0.034] reliminary	[-0.088,0.089]	[-0.05, 0.02]
WW, (LEP)			[-0.051,0.034]	[-0.105,0.069]	[-0.059,0.026]

• 95% CL limit on AC (Λ=2 TeV) 10 fb⁻¹

$ZZ \rightarrow \ell\ell\ell\ell$	f_4^Z	f_5^Z	f_4^{γ}	f_5^{γ}
$ZZ \rightarrow \ell\ell\nu\nu$	[-0.009, 0.009]	[-0.009, 0.009]	p[-0.010, 0.010]	[-0.011, 0.010]
LEP Limit	[-0.30, 0.30]	[-0.34, 0.38]	[-0.17, 0.19]	[-0.32, 0.36]

LHC improves wrt TeVatron and LEP

• LHC will be a W, Z, top factory. LHC goals:

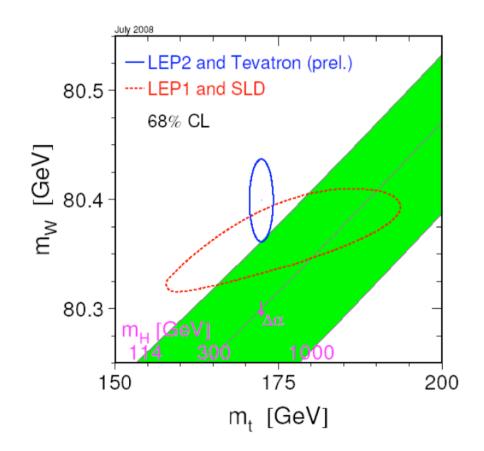
- $\Delta M_W < 10 \text{ MeV}$ • $\Delta M_{top} < 1 \text{ GeV}$
 - SM M_H constraint to < 15%
- $\Delta \sin^2 \vartheta_{\rm eff}^{\rm lept} \approx 10^{-4}$
- EW dibosons signals are expected to be established @ ATLAS & CMS with ~ 100 pb⁻¹ to 1 fb⁻¹
- Anomalous Gauge boson Couplings improved with ≈ 10 fb⁻¹ data

Main issues: understand detector response, measure soft QCD

- Even after finding a Higgs signal, (precision)EW measurements important:
 * A Higgs is not necessarily a SM Higgs
- * A Higgs is not necessarily a SM Higgs --> indirect constraints will help interpretation

Ultimately understanding systematics will be our main concern. This will come from data driven method and especially from the use of independent analysis methods

---> LHC will play a major role in establishing a coherent picture of the (EW) theory


> Thanks to the organizers, the ATLAS&CMS Collaborations and in particular to Juan Alcaraz, TomLeCompte, Sridhara Dasu

Altarelli '2008

Fit results	Here only m _w ar shows m _t from r only m _w	nd not m _t is used: ad. corr.s only m _t	March '08 m _W , m _t
m _t (GeV)	178.7+12-9	172.6±1.4	172.8±1.4
m _H (GeV)	143+236-80	111+56-39	87+36-27
log[m _H (GeV)]	2.16±0.39	2.05 ± 0.18	1.94± 0.16
$\alpha_{s}(m_{Z})$	0.1190(28)	0.1190 (27)	0.1185 (26)
χ^2/dof	16.8/12	16.0/11	17.2/13
m _W (MeV)	80385(19)	80363(20)	80377(15)

WA: m_w=80398(25)

Rad. corr.'s predict m_t and m_W very well. May be also m_H !

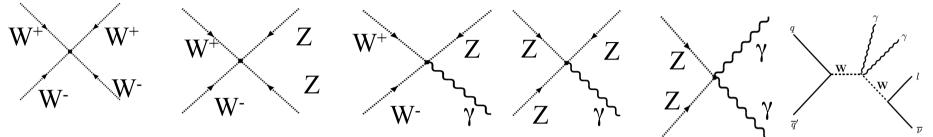
LDC, Physics at LHC - Split 2008

Mass of W boson : longer term perspectives

b^{-1}). Systematics on the result of the method based on p_T^{lep} (1 experime				
Source	effect	δm_w (MeV) 0.5		
Theoretical model	Γ_{W}			
	У _W	1		
	p _{tW}	3		
	QED radiation	<1		
Lepton measurement	linearity and scale	4		
	resolution	1		
	efficiency	4.5 (e); <1 (μ)		
Backgrounds	$W\to\tau\nu$	2.0		
	$Z \rightarrow I(I)$	0.3		
	$Z \to \tau\tau$	0.1		
	jet events	0.5		
Pile-up and UE		<1 (e); ~0 (µ)		
Beam crossing angle		<0.1		
total	ND	<mark>~7(e); 6(μ)</mark> al. : SN-ATLAS-2008-70		
	N.Besson et	al.: SN-A1LAS-2008-70		

. ent)

• For equal contribution to M_H (indirect) uncertainty :


10 1

if $\Delta M_W < 10 \text{ MeV} \rightarrow \Delta M_{top} < 1.5 \text{ GeV}$

Signature : three bosons in the final state

• Small yields, not an early measurement :

SM: 100 fb⁻¹ in leptonic channels (x, y) = 20 C $x^{1/2}$ held 2) here $\frac{1}{2}$ here $\frac{1}{2}$

$(p_T > 20 \text{ GeV}, \eta < 3)$ nep-pn/0003275					
$M_{ m Higgs}$ (GeV)	200	400	600	800	

Higgs (Gev)	200	100	000	000
$W^+W^-W^-$	68	28	25	25
$W^+W^+W^-$	112	49	44	44
W^+W^-Z	32	17	15	15
W^-ZZ	1.0	0.51	0.46	0.45
W^+ZZ	1.7	0.88	0.79	0.79
ZZZ	0.62	0.18	0.13	0.12

--> limits on AQC probably difficult

• Useful cross-check:

if something new seen in the trilinears, one might need the quartics to sort things out.