Prospects for γ at LHCb

Val Gibson (University of Cambridge)

On behalf of the LHCb collaboration

Physics at the LHC Split, October 3rd 2008

Introduction

- γ plays a unique role in flavour physics
 - Can be measured via both tree processes and those involving loops.
- Trees
 - Benchmark Standard Model reference point
- Loops
 - Sensitive to New Physics
- Very impressive measurements from the B factories
- To fully test SM and unitarity need
 - $\sigma_{\gamma} \sim$ few degrees precision
 - measurements in B^{\pm} , B^0 and B_s systems

LHCb

- High statistics
 - $\sigma_{b\overline{b}} \sim 500 \ \mu b$ at 14 TeV
 - $\mathcal{L} \sim 2 \text{ x } 10^{32} \text{ cm}^{-2} \text{s}^{-1}$
 - 10¹² bb per 2 fb⁻¹ (1 year)
 - All B species (B^{\pm} , B^{0} , B_{s} , B_{c} , Λ_{b} ...)
- Excellent tracking system
 - VELO and tracking detectors
 - Mass resolution, $\sigma_{\text{B(D)}} {\sim} 15$ (7) MeV
 - *B* vertex resolution, $\sigma_z \sim 200 \ \mu m$
 - Proper time resolution, $\sigma_{\tau} \sim 40$ fs
- Excellent particle identification
 - 2 RICH detectors
 - π/K separation over *p* ~2–100 GeV
- Trigger
 - High p_{T} hadron trigger at L0

3/10/08

γ with trees

 $B \rightarrow DK$ Strategies

Time integrated analyses, no tagging, based on: "ADS": Atwood, Dunietz, Soni; Phys. Rev. Lett. 78 (1997) 3257; Phys Rev. D63 (2001) 036005. "GLW": Gronau, London, Wyler; Phys. Lett. B253 (1991) 483; Phys. Lett. B265 (1991)172. "Dalitz" or "GGSZ": Giri, Grossman, Soffer, Zupan, Phys. Rev. D68 054018 (2003)

$B \rightarrow DK$ Strategies

- Measure γ through interference in $B \rightarrow (D^0 / \overline{D^0}) K$ decays
- Provided D^0 and $\overline{D^0}$ decay to common final state
- **Common parameters**

CKM angle γ Amplitude ratio, r_{B} Strong phase difference, δ_{B}

$$\frac{\left\langle B \to \overline{D^0} K \right\rangle}{\left\langle B \to D^0 K \right\rangle} = r_B e^{i(\delta_B - \gamma)}$$

$B^{\pm} \rightarrow D(hh)K^{\pm}$ (ADS+GLW)

• 6 rates, 5 parameters

 $\gamma = 60^{\circ}$ $r_B = 0.10$ $\delta_B = 130^{\circ}$ (PDG)

D decay parameters: $r_{K\pi} = 0.0616 \text{ (PDG)}$ $\delta_{K\pi} = -158^{\circ}$ (ADS formalism requires -180° phase shift w.r.t published result below)

Constraints

 $\delta_{K\pi} = \left(22^{+11+9}_{-12-11}\right)^{\circ}$ from CLEO-c PRL 100(2008) 221801

Mode	Sig. Yield*	B/S	
$B^+ \rightarrow D(K\pi)K^+$ (fav.)	28k	0.6	
$B^+ \rightarrow D(K\pi)K^+$ (sup.)	650	1.2	
$B^+ \rightarrow D(KK)K^+$	3k	1.2	
$B^+ \rightarrow D(\pi\pi)K^+$	1k	3.6	

LHCb-2008-011

Conoravity	210				
δ _{Kπ} (°)	-190	-174	-158	-144	-130
σ _γ (°)	12.7	10.8	13.8	12.6	10.8

D(hh)K*0 (ADS+GLW) LHCb-2007-050 LHCb-2008-031									
narameters	Mode	de			Sig. Yield B/S				
parametero	<i>⁰→D(Kπ)K*</i> ⁰ (fav.)			3.4k	[0.4,2.	0]			
-	B⁰→l	Ο(<i>K</i> π) <i>K</i> *0	(sup.)	(O(500) [2.0,13		3.0]		
	B⁰→l	$^{0}\rightarrow D(KK)K^{*0}$			O(500) [0				
$B^0 \rightarrow D(\pi\pi) K^{*0}$				(O(100) [0,14.0				
arameters:		ţi,	Δ		I				
l 6 (PDG) o sm requires -180º pha olished result below)	se	Probability dens	69	8% 5% r	$_{3^0} = [0.1]$ = $[0.0]$	8,0.34] 07,0.41] HEP 20	@ 689 @ 959 08	‰ c.l. ‰ c.l.	
r_{s}									
5 1.0 X		Sensitiv	ity 2 fk	<mark>)⁻¹</mark>					
(2-11) from CLEC)-с	δ _B 0 (°)	0	45	90	135	180]	
08) 221801		σ _γ (°)	6.2	10.8	12.7	9.5	5.2		

• 6 rates, 5

 $\gamma = 60^{\circ}$ $r_{B^0} = 0.40$ $\delta_{B^0}(\mathrm{scan})$

 B^0-

D decay pa $r_{K\pi} = 0.061$ $\delta_{K\pi}$ = -1580 (ADS formalis shift w.r.t pub

Constraints

 $\delta_{K\pi} = (22^{+11}_{-12})$ PRL 100(200

$B^{\pm} \rightarrow D(K3\pi)K^{\pm}(ADS)$

- $Br(D \rightarrow K3\pi) = 8.1\% \text{ c.f. } Br(D \rightarrow K\pi) = 3.89\%$
- 4 rates, multi-body final state
 - Integrate over ALL phase space
 - "Coherence factor" $R_{K3\pi}$

$$\Gamma\left[B^{-} \rightarrow D\left(K^{+}\pi^{-}\pi^{+}\pi^{-}\right)K^{-}\right] \propto r_{B}^{2} + r_{K3\pi}^{2} + 2r_{B}r_{K3\pi}\cos\left(\delta_{B} + \delta_{K3\pi} - \gamma\right)$$

— $r_{K3\pi} = 0.0568 (PDG)$

Atwood and Soni, PRD 68 033003(2003)

- Sensitivity to r_B even if $R_{K3\pi}=0$ (incoherent)
- Constraints

Mode	Sig. Yie	eld	B/S
$B^+ \rightarrow D(K^+ 3\pi) K^+$	31k		0.7
$B^+ \rightarrow D(K^- 3\pi)K^+$	530		2.3

LHCb-2007-004

$B^{\pm} \rightarrow D(K_{s}\pi^{+}\pi^{-})K^{\pm}$ ("Dalitz")

• $K_s \pi^+ \pi^-$ Dalitz plots contain a CP-violating contribution from the decay path interference which is sensitive to γ .

- Two analysis methods:
 - Unbinned fit based on amplitude model
 - Model independent binned fit using results from $\Psi(3770)$ on D decays
 - Giri et. al., PRD 68 (2003) 054018;

Bondar and Poluektov, EPJ C47 (2006) 347; hep-ph/0703267;arXiv:0801.0840

Prospects for gamma at LHCb

$B^{\pm} \rightarrow D(K_{s}\pi^{+}\pi^{-})K^{\pm}(``Dalitz'')$

- Signal yield ~ 5k (total) per year
- $B^{\pm} \rightarrow D(K_s \pi^+ \pi^-) \pi^{\pm}$ background suppressed with RICH and max. momentum cut (p<100 GeV/c)
- Dominant physics background
 B→D(K_sπ⁺π⁻) X plus random "K"
 ~16% prob. of picking up "K" from underlying event or other B.

Background type	B/S
$B^{\pm} \rightarrow D(K_{s}\pi^{+}\pi^{-})\pi^{\pm}$	< 0.095 (90% c.l.)
B→D*X+K	< 0.05 (90% c.l.)
DK-signal	< 0.09 (90% c.l.)
DK-random	0.35±0.03

$B^{\pm} \rightarrow D(K_{s}\pi^{+}\pi^{-})K^{\pm}("Dalitz")$

- Amplitude Fit: Generate and fit events assuming isobar model.
 - Models of BaBar [PRL 95 (2005) 121802] and Belle [hep-ex/0411049] give consistent results.
 - Total error will include model uncertainty, currently ~ 7° [BaBar PRD 78 (2008) 034023]
- Binned Fit: Removes model dependence by relating bins of Dalitz plot to experimental observables
 - Slight degradation in statistical precision
 - Residual error on γ from CLEO-c statistics ~1-2° [Asner, ICHEP 08]

Prospects for gamma at LHCb

3/10/08

γ with trees

Time Dependent $B \rightarrow Dh$ Strategies

 $B_s \rightarrow D_s K$: Aleskan, Dunietz and Kayser, Z. Phys. C54 (1992) 653.

 $B^0 \rightarrow D\pi$ and $B_s \rightarrow D_s K$ "Uspin Approach": Fleischer, Nuc. Phys. B671 (2003) 459.

$B_s \rightarrow D_s K$

LHCb-2007-017 LHCb-2007-041

• Measure $\gamma + \phi_s$ from interference between mixing and decay amplitudes.

• Large interference effects

$$\frac{b}{s} \xrightarrow{\qquad K^+} \frac{1}{\lambda} \frac{V_{ub}}{V_{cb}} \approx 0.4$$

Mode	Sig. yield	B/S
$B_s \rightarrow D_s K$	6.2k	0.7
$B_s \rightarrow D_s \pi$	140k	0.2

- ϕ_s input from $B_s \rightarrow J/\Psi \phi$ ($\sigma_{\phi_s} \sim 0.03$ mrad for 2 fb⁻¹ see A.Satta talk)
- Include $B_s \rightarrow D_s \pi$ (20x Br) to determine Δm_s and tagging dilution
- Simultaneous fit to $B_s \rightarrow D_s \pi$ and $B_s \rightarrow D_s K$ decay time distributions (tagged and untagged)

$B^0 \rightarrow D\pi$

- Measure $\gamma + \phi_d$ analogous to $B_s \rightarrow D_s K$
- ϕ_d input from $B^0 \rightarrow J/\Psi K_s$ ($\sigma_{\sin\phi_d} = 0.02$ for 2 fb⁻¹ LHCb-2007-045)
- Problems
 - Interference small
- $r_{D\pi} \sim -\lambda \left| rac{V_{ub}}{V_{cb}}
 ight| pprox -0.02$ - 8 fold ambiguity ($\Delta\Gamma$ small)
- Potential solutions

Mode	Sig. yield	B/S
$B_s \rightarrow D_s K$	6.2k	0.7
$B \rightarrow D\pi$	1340k	0.22

- "Conventional approach": compare with other channels e.g. $B^0 \rightarrow D^*\pi$
- "Uspin approach": $B^0 \rightarrow D\pi$ and $B_s \rightarrow D_s K$

Uspin approach shows very promising results.

Sensitivity	2 fb ⁻¹	10 fb ⁻¹
$\sigma_{\gamma}(^{o})$ for $\delta = 60^{o}$	$\pm 9^{+3}_{-4}$	$\pm 5 \pm 3$
$\sigma_{\gamma}(^{\mathrm{o}})$ for $\delta = 10^{\mathrm{o}}$	+30 +22 -20 -10	+12 +4 -8 -15

Input : $\gamma = 60^{\circ}$ (±stat. ± 30% Uspin breaking)

γ with trees : Global Sensitivity

Perform global fit to $B \rightarrow DK$ with common parameters.

Include results from B^0 and B_s time dependent analyses.

l	Input measurements:	Parameters (input value):						
l	B [±] →D ⁰ K [±]	$B^{\pm} \rightarrow D^{0}K^{\pm}$						
	• $D^0 \to K\pi, KK, \pi\pi$ (LHCb-2008-011) • $D^0 \to K\pi\pi\pi$ (LHCb-2007-004) • $D^0 \to K_s\pi\pi$ (LHCb-2007-048) $B^0 \to D^0 K^{*0}$ • $D^0 \to K\pi, KK, \pi\pi$ (LHCb-2007-050) Time dependent measurements:		• γ (60°) • r_B – ratio of magnitude of diagrams (0.1) • δ_B – strong phase difference (130°) $B^0 \rightarrow D^0 K^{*0}$ analogues: r_{B^0} (0.4), δ_{B^0} (scan) D^0 decay parameters for $K\pi$, $K\pi\pi\pi$:				0.1)	
	• $B^0 \to D\pi$ (LHCb-2008-035) • $B_s \to D_s K$ (LHCb-2007-041)		• $r_{K\pi}$, $r_{K3\pi}$ well known (PDG) • $\delta_{K\pi}$ (-158°), $\delta_{K3\pi}$ (144°) • $R_{K3\pi}$ – coherence factor CLEO-c					ed by
6	"Conventional" approach used for	δ	θ _B 0 (°)	0	45	90	135	180
$B^{0} \rightarrow D\pi \ (\sigma_{\gamma}=20^{\circ} \text{ with } 2 \text{ fb}^{-1}) \text{ to avoid}$ large correlations with $B_{s} \rightarrow D_{s}K$.		С	σ_{γ} for 0.5 fb ⁻¹ (°)	8.1	10.1	9.3	9.5	7.8
		С	σ_{γ} for 2 fb ⁻¹ (°)	4.1	5.1	4.8	5.1	3.9
		C	τ for 10 fb ⁻¹ (°)	20	27	24	26	19

γ with loops

New physics in $B \rightarrow hh$ and $B \rightarrow hhh$ modes

 $B^0 \rightarrow \pi\pi$ and $B_s \rightarrow KK$:

"Uspin Approach", Fleischer, Phys. Lett B458 (1999) 306.

 $B^+ \rightarrow K^+ \pi^- \pi^+$ and $B^0 \rightarrow K_s \pi^- \pi^+$:

"Dalitz Approach", Bediaga, Guerrer and Miranda, Phys Rev D76 073011 (2007).

Summary

LHCb offers exciting prospects for a precision measurement of $\boldsymbol{\gamma}$

- γ with trees
 - Standard Model benchmark
 - External input from CLEO-c of upmost importance
 - A combined sensitivity of $\sigma_{\gamma} \sim 2-3^{\circ}$ is expected with 10 fb⁻¹ of data
 - Many channels still to be investigated

 $D \rightarrow K \pi \pi^0, D \rightarrow K_s K K, D \rightarrow K_s K \pi, B \rightarrow D^{(*)} K^{(*)}, B_s \rightarrow D_s^{(*)} K_1 \text{ etc}$

- γ with loops
 - Sensitive to New Physics
 - − *B*→ *hh* analysis can measure γ ($\sigma_{\gamma} \sim 5^{\circ}$ with 10 fb⁻¹) and test Uspin symmetry
 - $B \rightarrow hhh$ very promising first studies

First challenge: reconstruct hadronic final states with real data..... coming soon

CP Formalism and $\delta_{K\pi}$

In $D \rightarrow K\pi$ decays the DCS to CF amplitudes is defined as

$$\frac{\left\langle K^{+}\pi^{-}\left|H\right|D^{0}\right\rangle}{\left\langle K^{-}\pi^{+}\left|H\right|D^{0}\right\rangle}=r_{K\pi}e^{-i\delta_{K\pi}}$$

Two conventions for CP operation adopted

$$\begin{array}{ccc} \hline 1 & CP \left| D^{0} \right\rangle = \left| \overline{D^{0}} \right\rangle & \longrightarrow & \frac{\left\langle K^{+} \pi^{-} \left| H \right| D^{0} \right\rangle}{\left\langle K^{+} \pi^{-} \left| H \right| \overline{D^{0}} \right\rangle} = r_{K\pi} e^{-i\delta_{K\pi}} & \text{ADS Formalism} \\ \hline \end{array}$$

$$\begin{array}{cccc} \hline 2 & CP \left| D^{0} \right\rangle = -\left| \overline{D^{0}} \right\rangle & \longrightarrow & \frac{\left\langle K^{+} \pi^{-} \left| H \right| D^{0} \right\rangle}{\left\langle K^{+} \pi^{-} \left| H \right| \overline{D^{0}} \right\rangle} = r_{K\pi} e^{-i(\pi + \delta_{K\pi})} & \text{CLEO-c Formalism} \\ \end{array}$$

i.e. Measurement of CLEO-c $\delta_{K\pi}$ must be offset by 180° when input to the ADS analysis

γ with trees : Global Sensitivity

Weight (in %) of each contributing analysis with 2 fb⁻¹ for two values of δ_{B^0}

Analysis	$\delta_B o = 0^{\rm o}$	$\delta_B o = 45^o$
$B^{\pm} \rightarrow D^{0}(hh)K^{\pm}, B^{\pm} \rightarrow D^{0}(K3\pi)K^{\pm}$	25	38
$B^{\pm} \rightarrow D^{0}(K_{s}\pi\pi)K^{\pm}$	12	25
$B^0 \rightarrow D^0(hh)K^{*0}$	44	8
$B_s \rightarrow D_s K^{\pm}$	16	24
$B^0 \rightarrow D\pi$	3	5

Sensitivity of $B^0 \rightarrow D^0 K^{*0}$ improves by a factor of two in going from $\delta_{B^0} = 45 \rightarrow 180^\circ$. Residual dependence remains in global fit, but diluted due to other measurements.

 $B^+ \rightarrow K^+ \pi^+ \pi^-$ and $B^0 \rightarrow K_s \pi^+ \pi^-$

Dalitz anisotropy: $K\pi\pi$ example

 fast MC sample inspired by BaBar parameters and 1 nominal year of LHCb statistics (~300k)

	mode	B+		E	3-	
•		a+	δ+	a-	$\delta -$	
	K*(890)∏	1.00	0.00	1.00	0.00	
	К(1430)П	2.08	0.1	2.08	0.1	
	ρ(770)K	0.874	-0.55	0.874	0.49	
	f0(980)K	1.02	2.29	1.02	2.29	
	χκ	0.3	-2.52	0.3	-2.52	
	NR	0.6	-1.85	0.6	-1.85	

CKM 2008, September 9-13, G. Guerrer

Prospects for gamma at LHCb

