IMPLICATIONS OF β_s MEASUREMENTS

Luca Silvestrini

INFN, Rome

- Introduction
- · The UTfit analysis of B_s mixing (arXiv:0803.0659, updates)
 - · Ingredients
 - · Results
- · Implications for NP
 - · General considerations
 - · SUSY: Bounds on $(\delta_{23}^d)_{AB}$ and $b \rightarrow s$ penguins
- · Conclusions

Thanks to M. Rescigno, M. Ciuchini, M. Pierini

INTRODUCTION

The SM contribution to CP violation in B_s mixing is very well predicted and small:

- Sin $2\beta_s$ = 0.037 ± 0.002 (SM or MFV)
- Sin $2\beta_s$ = 0.041 ± 0.004 (Arbitrary NP)

Thus, observing a mixing phase significantly different from 0.041 ± 0.004 would be a very clean signal of NP in B_s mixing.

General parametrization of NP in B_s mixing

Mixing amplitude = SM contribution + NP contribution

$$C_{B_s} e^{2i\phi_{B_s}} = \frac{A_s^{\text{SM}} e^{-2i\beta_s} + A_s^{\text{NP}} e^{2i(\phi_s^{\text{NP}} - \beta_s)}}{A_s^{\text{SM}} e^{-2i\beta_s}} = \frac{\langle B_s | H_{\text{eff}}^{\text{full}} | \bar{B}_s \rangle}{\langle B_s | H_{\text{eff}}^{\text{SM}} | \bar{B}_s \rangle}$$

$$\begin{split} \frac{\Gamma_{12}^q}{A_q^{\text{full}}} &= -2\frac{\kappa}{C_{B_q}} \left\{ e^{2\phi_{B_q}} \left(n_1 + \frac{n_6 B_2 + n_{11}}{B_1} \right) - \frac{e^{(\phi_q^{\text{SM}} + 2\phi_{B_q})}}{R_t^q} \left(n_2 + \frac{n_7 B_2 + n_{12}}{B_1} \right) \right. \\ &\quad + \frac{e^{2(\phi_q^{\text{SM}} + \phi_{B_q})}}{R_t^{q^2}} \left(n_3 + \frac{n_8 B_2 + n_{13}}{B_1} \right) + e^{(\phi_q^{\text{Pen}} + 2\phi_{B_q})} C_q^{\text{Pen}} \left(n_4 + n_9 \frac{B_2}{B_1} \right) \\ &\quad - e^{(\phi_q^{\text{SM}} + \phi_q^{\text{Pen}} + 2\phi_{B_q})} \frac{C_q^{\text{Pen}}}{R_t^q} \left(n_5 + n_{10} \frac{B_2}{B_1} \right) \right\} \end{split}$$

 $C_{\rm pen}$ and $\phi_{\rm pen}$ parameterize possible NP contributions to $\Gamma^{\rm q}_{12}$ from b \to s penguins (a small effect, entering only at NLO)

OBSERVABLES WE USE - THEORY

$$\Delta m_s = |A_s^{\text{full}}| = C_{B_s} (\Delta m_s)^{\text{SM}}$$

$$2\phi_s = -\arg A_s^{\text{full}} = 2(\beta_s - \phi_{B_s})$$

$$A_{\rm SL}^s \equiv \frac{\Gamma(\bar{B}_s \to \ell^+ X) - \Gamma(B_s \to \ell^- X)}{\Gamma(\bar{B}_s \to \ell^+ X) + \Gamma(B_s \to \ell^- X)} = \operatorname{Im}\left(\frac{\Gamma_{12}^s}{A_s^{\text{full}}}\right)$$

$$A_{\rm SL}^{\mu\mu} = \frac{f_d \chi_{d0} A_{\rm SL}^d + f_s \chi_{s0} A_{\rm SL}^s}{f_d \chi_{d0} + f_s \chi_{s0}}$$

$$\frac{\Delta\Gamma_s}{\Delta m_s} = \operatorname{Re}\left(\frac{\Gamma_{12}^s}{A_s^{\text{full}}}\right) \qquad \qquad \tau_{B_s}^{FS} = \frac{1}{\Gamma_s} \frac{1 + \left(\frac{\Delta\Gamma_s}{2\Gamma_s}\right)^2}{1 - \left(\frac{\Delta\Gamma_s}{2\Gamma_s}\right)^2}$$

OBSERVABLES WE USE - EXPT

$$\Delta m_s \; [\mathrm{ps}^{-1}]$$
 17.77 ± 0.12 $A_{\mathrm{SL}}^s \times 10^2$ -0.20 ± 1.19 New! $A_{\mathrm{SL}}^{\mu\mu} \times 10^3$ -4.3 ± 3.0 $\tau_{B_s}^{\mathrm{FS}} \; [\mathrm{ps}]$ 1.461 ± 0.032

Tagged analysis of ${\rm B_s} \to {\rm J/\Psi} \phi$ from CDF and

DO: use 2D likelihood for $\Delta\Gamma_s$ vs ϕ_s No.

New!

Unfortunately, new CDF likelihood not yet available: use published measurement

The th input for $\Delta\Gamma_s$ is crucial: most of the exp allowed region has a too large $|\Delta\Gamma_s|$.

We use a conservative estimate of the SM error and allow NP to enter $\Delta\Gamma_s$ through NP penguins.

The two solutions for ϕ_s correspond to two regions for A_s^{NP} and ϕ_s^{NP} : $A_s^{NP}/A_s^{SM}=0.6\pm0.4~\&~\phi_{NP}=-57\pm10$ $A_s^{NP}/A_s^{SM}=1.8\pm0.1~\&~\phi_{NP}=-80\pm3$

Requires NP with new sources of CP violation!

IMPLICATIONS ON NP

- We find nonstandard CP violation in B_s mixing at ~3 σ \Rightarrow evidence of NP!
- Need NP at the level of $\sim 60\%$ with a maximal phase in B_s mixing
- Nonstandard CPV in B_d and K can be ~ 10%
- Need a flavour structure, but not NMFV!

 $A^{NP}_{d}/A^{SM}_{d}\sim 0.1$ and $A^{NP}_{s}/A^{SM}_{s}\sim 0.6$ correspond to $A^{NP}_{d}/A^{NP}_{s}\sim \lambda$ i.e. to an additional λ wrt NMFV

IMPLICATIONS ON NP - II

• Large NP contributions to b \leftrightarrow s transitions are natural in nonabelian flavour models, given the large breaking of flavour SU(3) due to the top quark mass

Pomarol, Tommasini; Barbieri, Dvali, Hall; Barbieri, Hall; Barbieri, Hall, Romanino; Berezhiani, Rossi; Masiero et al; ...

 GUTs can naturally connect the large mixing in v oscillations with a large $b \leftrightarrow s$ mixing

Baek et al.; Moroi; Akama et al.; Chang, Masiero, Murayama; Hisano, Shimizu; Goto et al.; ...

IMPLICATIONS ON NP - III

- In a given model expect correlation between b \leftrightarrow s (B_s mixing) and b \rightarrow s (penguin decays) transitions
- This correlation is welcome given the large room for NP in $b \to s$ hadronic penguins $(S_{peng}, A_{K\pi}, ...)$ Beneke; Buchalla et al.; Buras et al.; London et al.; Hou et al.; Lunghi & Soni; Feldmann et al.; ...
- The correlation is however affected by large hadronic uncertainties

THE MSSM

- In the MSSM, two classes of contributions to FCNC's:
 - Supersymmetrization of SM contributions $(W \rightarrow \tilde{w}, t \rightarrow \tilde{t}) + H^{\pm}$: dominant in MFV
 - pure SUSY contributions: \tilde{g} \tilde{q} : requires new sources of flavour violation in squark mass matrices

Hall, Kostelecky & Raby; Gabbiani et al.

THE GENERAL MSSM

Ciuchini et al., in progress, Preliminary

- We consider a MSSM with generic soft SUSY-breaking terms, but
 - dominant gluino contributions only
 - mass insertion approximation

four insertions AB=LL, LR, RL, RR take m_{SUSY} =350 GeV for reference

* chirality-flipping mass insertions are strongly bounded by b -> s γ : they are too small to produce the measured ϕ_s case #1: single mass insertion, e.g. $(\delta_{23})_{LL}$

* large MI needed for ϕ_s : tension with b -> s γ

* MI saturates at 1: upper bound \widetilde{m} < O(1 TeV)

* huge effect in b->s penguins

case #2: double mass insertion, $(\delta_{23})_{LL}$ & $(\delta_{23})_{RR}$

* no need of large MIs: $(\delta_{23})_{LL} \sim (\delta_{23})_{RR} \sim 3-4 \cdot 10^{-2}$ * pre//p. b -> s γ is no longer a problem

* large effects in b->s
penguins still possible
(larger if LR MIs are
also switched on)

$b\rightarrow s$ and $\tau\rightarrow \mu$ in SUSY-GUTs

If SUSY is broken at a scale larger than M_{GUT} , squark and slepton masses unify, including off-diagonal terms i.e. δs

Ciuchini et al, hep-ph/0307191

The following relations hold at M_Z :

$$(\delta_{ij}^d)_{RR} \simeq \frac{m_L^2}{m_D^2} (\delta_{ij}^l)_{LL}$$

$$(\delta_{ij}^u)_{RR} \simeq \frac{m_E^2}{m_U^2} (\delta_{ij}^l)_{LL}$$

$$(\delta_{ij}^{u,d})_{LL} \simeq \frac{m_E^2}{m_Q^2} (\delta_{ij}^l)_{RR}$$

$$(\delta^d_{ij})_{LR} \simeq \frac{m_{L_{ave}}^2}{m_{Q_{ave}}^2} \frac{m_b}{m_{\tau}} (\delta^l_{ij})_{RL}^*$$

A LOWER BOUND ON τ → μγ

Parry, Zhang, arXiv:0710.5443v2

mass insertion analysis in a SUSY-GUT scheme

- * RG-induced (δ₂₃)_{LL}
- * explicit $(\delta_{23})_{RR}$

In the UTfit range for the B_s mixing phase:

 $BR(\tau \to \mu \gamma) > 3 \times 10^{-9} !!$

In a SU(5) SUSY-GUT with v_R and supergravity-like boundary conditions: large φ_s requires too large BR($\tau \rightarrow \mu \gamma$): marginal !!!

Enlarging the GUT group to SO(10), the correlation φ_s - $BR(\tau \rightarrow \mu \gamma)$ can be relaxed large φ_s correspond to large CP asymmetries in $B \rightarrow X_s \gamma$

CONCLUSIONS

- We have evidence of nonstandard CP violation in B_s mixing, pointing to non-MFV extensions of the SM
- Nonstandard CPV is small in B_d and K mixing, pointing to a specific NP structure
- Correlation with $b \to s$ penguins and/or $\tau \to \! \mu \gamma$ is possible
- If confirmed, expect NP in the LHC range and more NP effects at LHCb/SuperB!