





# Jets and Missing Transverse Energy Reconstruction With CMS

Didar Dobur (INFN-Pisa)

On be half of CMS Collaboration

4th Conference on Physics at LHC 29 Sep - 4 Oct 2008, Split, Croatia



### Introduction





Several Jet clustering algorithms available on the market, desired properties are:

- ◆ Good correspondence between parton-, particle-, detector-level
- ◆ Insensitivity to detector details, PileUp, underlying event
- **→** Reliable calibration
- + Fast execution
- ◆ Infrared and collinear safe



## Infrared Unsafe sensitive to the addi

sensitive to the addition of soft particles



#### **Collinear Unsafe**

sensitive to splitting a 4-Vector into two smaller



### Jet Algorithms in CMS



### \* IterativeCone Algorithm

- Input: CaloTowers/particles with E<sub>T</sub> > 1 GeV
- Iterative search for stable cones of radius R

$$R = \sqrt{\Delta \eta^2 + \Delta \phi^2}$$

- particles assigned to a stable cone are removed from the input list and iterate... No split&Merge conflict
- Not infrared & collinear safe

### \* MidPoint Cone Algorithm

- similar to IterativeCone Algorithm
- Infrared safety introduced considering "mid-points" of proto-Jets closer than 2R. IR safe only up to NLO.
- Split&Merge necessary
- may leave unclustered energy
- Not any more part of standard reconstruction in CMS

Recombination scheme: "E-Scheme" for all jet algorithms

### \* (Fast-) k<sub>T</sub> Algorithm

- Faster implementation of standard k<sub>T</sub>
- combines 4-vectors according to their relative transverse momentum

$$\mathbf{d}_{i,j} = \min\{k_T^i, k_T^j\} \sqrt{\Delta \eta_{ij}^2 + \Delta \phi_{ij}^2}$$
  
$$\mathbf{d}_i = k_T^i$$

- Infrared & Collinear Safe
- No unclustered energy

### \* SisCone Algorithm

- "Seedless Infrared Safe Cone" algorithm
- searches for ALL stable cones
- applies Split&Merge procedure
- Infrared and Collinear safe
- No dark energy



## Jet Algorithms: Timing







- \* Jet reconstruction takes  $\sim 0.5\%$  of CPU time necessary for full event reconstruction, Jet algo choice does not have significant impact
- \* IterativeCone algorithm is simple and fast: will be used at HLT
- \* Execution time for  $k_T$  algorithm, as implemented in the FastJet package is improved dramatically w.r.t. earlier implementations



## Jet matching efficiency



Matching efficiency: fraction of GenJets which matches to a Calorimeter jet with a distance  $\Delta R(GenJet,CaloJet)<0.5$ 





- ~100% efficiency for pT>30 GeV
- KT and SiSCone algo yields better efficiencies
- Data driven methods to measure the efficiency under development



## Jet energy corrections



### CMS develops a factorized multi-level jet correction



- ◆ Offset: correct for Pile Up and electronic noise in the detector (measure in zero-bias data)
- ★ Relative(eta): variations in jet response with eta relative to a control region
- ♦ Absolute (p<sub>T</sub>): correcting the p<sub>T</sub> of a measured jet to particle level jet versus jet p<sub>T</sub>
- ★ EMF: variations in jet response with electromagnetic energy fraction
- → Flavor: variations in jet response to different jet flavor (light quark, c,b, gluon)
- ◆ Underlying Event
- ◆ Parton: correcting measured jet p<sub>T</sub> to the parton level
  - derive from MC simulation tuned on test-beam data at start-up, data driven when available, on the long term from simulation tuned on collision data



## Jet calibrations: relative(η)



\*goal: Flatten the jet response versus η

#### MC based:

- \* QCD di-jet events
- \* study  $\Delta p_T(\eta) = p_T^{CaloJet} p_T^{GenJet}$
- \* most probable val of  $\Delta p_T(\eta)$  is compared to most probable val of

 $\Delta p_T(\eta)|_{|\eta|<1.3}$  (reference point is the response at  $|\eta|<1.3$ )

#### Data driven

- \* di-jet balance in QCD events  $\Delta \Phi > 2.5$
- \* any 3rd jet  $p_T < 0.25p_T^{dijet}$



$$p_T^{dijet} = \frac{p_T^{probe} + p_T^{barrel}}{2}$$
 
$$B = \frac{p_T^{probe} - p_T^{barrel}}{p_T^{dijet}}$$
 
$$r = \frac{2 + \langle B \rangle}{2 - \langle B \rangle}$$

#### Response = ptCaloJet/ptGenJet



#### Relative Response= $r(\eta)/r(|\eta|<1.3)$



Response values from MC & dijet balance tech. are in agreement within  $1\% (|\eta|<1.3)$ ,  $2-3\%(1.3<|\eta|<3)$ ,  $5-10\% (3<|\eta|<5)$ 



## Jet calibrations:absolute(p<sub>T</sub>)



### MC based

- ightharpoonup Corrects energy of jet back to the particle level in control region ( $|\eta|$ <1.3)
- **□** Use Calorimeter jets within  $|\eta|$ <1.3 and matched to GenJet ΔR<0.25

$$\Delta p_T = p_T^{CaloJet} - p_T^{GenJet}$$

#### Absolute Jet Response vs. p<sub>T</sub>(GenJet)



#### Absolute Jet Correction vs. p<sub>T</sub>(CaloJet)





## Jet energy correction:absolute pt



### Data driven: key point is pT balance, in $Z/\gamma$ +jet events with the jet in the control region

- consider clean events with well separated Jet- $Z(\gamma)$
- NO extra jet with  $P_T > 0.1P_T(\gamma)$   $(0.2P_T(Z))$ .

#### <u>y + jet:</u>

- isolated photons to reduce QCD bgr.
- Measure calibration for pt < 600 GeV for 100 pb-1.





#### $(Z \rightarrow \mu\mu)$ + jet:

- muons reconstructed in the tracker (independent from calorimeter),  $m_{\mu\mu}$  within m(Z)±20 GeV
- negligible bkg
- measure absolute jet correction with  $p_T < 400$  GeV for 100 pb<sup>-1</sup>.









## Jet energy correction(optional)



#### \* EMF dependent corrections

- correct for variations in jet response versus EMF of Jets
- improves jet energy resolution up to 10%



#### \* Corrections to parton level



#### \* Flavor dependent corrections

- Gluon, c quark, and b quark jets all have lower response than light quark jets





#### **Flavor Fraction for QCD Dijets**



- correcting jet pT to the parton level
- gluons radiate more → lower
   response due to out-of-cone effect
- process dependent



## Jet energy resolution: Data-Driven



### Asymmetry method

- $\bullet$  select the back-to-back ( $\Delta\Phi$ >2.7) jets in the barrel region
- relate resolution to Asymmetry variable A

$$A = \frac{p_T^{Jet1} - p_T^{Jet2}}{p_T^{Jet1} + p_T^{Jet2}}$$

$$\frac{\sigma(p_T)}{p_T} = \sqrt{2}\sigma_A$$

 Good agreement between datadriven and MC-driven resolutions



Resolution as a function of the p<sub>T</sub>
 threshold on the third jet





### Performance in that events





- ♦ hadronic decays in ttbar ALPGEN sample
- select uniquely matched jets to top(W) decay products
- ◆ Apply MC based jet calib & flavor dependent corrections
- ↑ m<sub>top</sub> = m<sub>trhee-Jet</sub>

Gen:at GenJet Level

**CALO**: uncalibrated CaloJets

CORR: MC based jet calibrations applied

L5:calibrations+flavor dependent corrections

#### m<sub>top</sub> resolution for different jet algorithms and their R/D parameters



☑ Gen Level:smaller R/D
parameter is favored
☑ kT algorithm performs
better with D=0.6 at
RecoLevel



### Jet Reconstruction with Tracks



- Reconstruct jets using charged tracks, independent from calorimeter
- charged fraction of hadronic jets is about 60% (large fluctuations!)
- Provides good jet efficiencies, better angular resolution (Φ)







## Missing Transverse Energy



- Imbalanced transverse energy in the event
- signature of only weakly interacting particles
- Crucial object for many measurements



```
    Medium/low MET (~20-100 GeV)
    SM measurements (top, W, Higgs, τ, ...)
    Large MET (>200 GeV)
    SUSY(gluino searches: jets+MET, ...)
    Extra Dimension searches(monojets)
```

#### **Challenges:**

- MET triggering
- Corrections on MET:
  - jet energy corrections
  - ¥ μ/e/τ corrections
  - vertex corrections
  - hot/dead channels





## Missing E<sub>T</sub> performance



MET is calculated from uncorrected energy deposits in projective Calorimeter Towers

$$\vec{E_T} = -\sum_{n} (E_n \sin \theta_n \cos \phi_n \hat{\mathbf{i}} + E_n \sin \theta_n \sin \phi_n \hat{\mathbf{j}}) = E_x \hat{\mathbf{i}} + E_y \hat{\mathbf{j}}$$

#### Resolution

 $\sigma(E_T) = A \oplus B\sqrt{(\sum E_T - D)} \oplus C(\sum E_T - D)$ 

\*Noise(A): electronic, underlying event, Pile Up

**\*Stochastic(B)**: sampling effects, e/π

\*\*Constant(C): non-linearities, cracks,hot/dead
channels

\*\*offset(D): effects of Pile Up, underlying event on  $\sum E_T$ , anti-correlated with noise term





### Missing E<sub>T</sub> Calibrations



- **\*** MET is calculated from un-calibrated CaloTowers, needs to be corrected for non-linearities in response versus  $P_T$  and  $\eta$
- \* standard jet calibrations used to correct MET
- \* CMS has a non-compensating calorimeter system, add third variable EMF
- \* Use calibrated jets with EMF < threshold, i.e 90%, & PTjet(Uncor) > 10 GeV

$$\vec{E}_T^{\mathrm{corr}} = \vec{E}_T - \sum_{i=1}^{\mathrm{N_{jets}}} \left[ \vec{p}_{T_i}^{\mathrm{corr}} - \vec{p}_{T_i}^{\mathrm{raw}} \right]$$

Bias & absolute resolution on MET<sub>||</sub> for  $(W \rightarrow e \lor)$ +jets







### Muon corrections on missing E<sub>T</sub>



Muon leaves small fraction of its energy in calorimeter for which MET

needs to be corrected

$$ec{E}_T = -\sum_{i=1}^{ ext{towers}} ec{E}_T^i - \sum_{i=1}^{ ext{muons}} ec{p}_T^{\,\mu} + \sum_{i=1}^{ ext{deposit}} ec{E}_T^i.$$

energy deposited in calorimeter by muon

Muons are identified in the Tracker and muon system, well separated in η-φ with jets & PTµ>10 GeV are used further study for selection criteria for high pT muons underway

#### MET component parallel to Z for different correction levels





Raw METII +Muon Corr +Corr for muon Energy dep. in CAL



### Tau corrections on missing E<sub>T</sub>



\* Tau jets are different than ordinary QCD jets, typically less constituents with fairly high energy applying standard jet corrections to hadronic tau jets will result in significant overcorrection on ME<sub>T</sub>

\* Tau-specific corrections have been derived using Particle-flow algorithm and propagated into ME<sub>T</sub> corrections

#### very accurate τ energy with Particle-Flow\*





<sup>\*</sup> Particle Flow is an algorithm that uses Tracking & Calorimeter information for particle id and energy measurement, not covered here



### Summary



- © CMS exercises several jet algorithms and their parameters, recent developments on algorithmic side, timing, IRC safety...
- A lot of effort on Jet calibrations,
  - M A multi-level factorized correction
  - MC based as well as data driven techniques
- ☑ Jets reconstructed using charged Tracks only & Jets+Tracks & Particle-Flow objects are under development and promising
- Missing E<sub>T</sub> is a complicated object but it is important
- Calibrations to improve resolutions are promising
- ☑ biggest problems with MET will be known when beams collide (beam effects, dead/hot channels are important)

First data will be crucial to understand both objects and their calibrations