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¥ Jets at LHC
experimental requirements (light-flavour jets)

i Jet algorithms in ATLAS
popular and alternative approaches

i Calibration strategy
main models and refined corrections

¥ Regquirements for initial jet reconstruction
baseline/robust methods
in-situ (“data only”) calibration



Jets at LHC

New kinematic regime for jet physics
Jets can be much harder
- Jets get more narrow in general
(kinematic effect)
- Higher energies to be contained in
calorimeters
Jet reconstruction challenging

Physics requirements typically 1% jet
energy scale uncertainty

- top mass measurement in ttbar
LHC is a top factory!

- hadronic final states at the end of

long decay chains in SUSY
Quality takes time

- Previous experiments needed up to
10 years of data taking to go from
~4% down to ~1%

- Cannot often be achieved for all
kinds of jets and in all physics
environments
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Experimental Requirements for Jet Finders

Detector technology independence
- Minimal contributions to spatial and energy resolution
- Insignificant effects of detector environment

Noise, dead material, cracks Evts/year

- Easy to calibrate (...Well...) grocess o () | (A-10 fb1)
Environment independence W — ev 15 ~108
- Stability with changing luminosity 7 e e 15 ~107
- Identify all physically interesting jets =
from energetic partons in pert. QCD " - e
- High reconstruction efficiency . RctOle e HO
Implementation I“'i.}ﬁ"’e p; > 1 TeV 0.1 ~10°
- Fully specified Production | P:>2 TeV 10 ~10°
selections and configurations known p,>3TeV | 1.3x10¢ ~10

- Efficient use of computing sources . .
Dominant direct

: _ photon production
e Expectations: gives access to gluon

— Jet energy scale error very quickly structure at high x
systematically dominated (~0.0001-0.2)

e Large statistics in unexplored kinematic
range already at low luminosity

— Calibration channels quickly accessible
e Especially for y+jet(s), W->jj, etc.
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Popular Jet Algorithms in ATLAS

¥ Seeded cone ¥ Recursive recombination (k;)
e p; (seed) > 1 GeV
Alternative applications:

- CDF mid-point, anti-k+, Cambridge/Aachen
recursive recombination (Ot order kT), “optimal
jet finder” (event shape fit)

- More options: FastJdet libraries Algorithm R | D Clients
easier comparison with CMS, theory | sceded cone
No universal configuration or jet finder Et (seed) = 1 GeV 0.4 W mass
. ! ' spectroscopy,
- Narrow jets fo = 0.5 top physics,
W->jj in ttbar, some SUSY
: : ! Kt (FastKt) 0.4 |SUSY
- Wider jets
Inclusive jet cross-section, QCD Seeded Cone
[ Ktjets E/Cone 0.7 jetsEvsE | I Et (Seed =1 GeV), 0.7 QCD, jet cross-
102~ ATLAS MC [ fsm = 0.5 sections
L Kt (FastKt) 0.6
1.01E +++-|—|-+H_H_ ”n " ++ Kt 0.7 /Cone 0.7
C R P Kt 0.6 /Cone 0.7
Tty +++++*"“*+++++++*1"‘t ++++¢iﬁ%i Kt0.5 fcz:z 0.7
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calo /E truth

(Ejet jet
(E calo /' E truth

jet jet

& can be viewed as a
measure of residual
calibration uncertainty
(distorted detector) with
respect to the best calibrated
jet reco configuration =>
estimation of systematic
error in the general jet reco

Effect of detector distortion
depends on jet size,
calorimeter signal choice, and
kinematic domain:

~ 2% for cone jets, up to
~49% for central (narrow) kT
jets!
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Effect of Calorimeter Signal C

Choice on

Jet Energy Resolution

Typical relative energy
. . 2 < < 20< vl <22
resolution (without 10 0. <04 ~ 2.0<p|<22
particular corrections for “ [ e Td% o on ATLAS MC || |- kR=06 ATLAS MC
distorted detector) has a S " T -
stochastic term of ol PR dbyda | W:}‘L#ﬁ%
- i oo™ ek o e teegESeTe
60%/1/E(_Ge{/)and a high Al [pkas - - %;:*_;9
energy limit of 3% : ﬂﬁf’l, e
Bl
Difference in resolution B
between tower and 10—
. I ATLAS MC || - kr=04 ATLAS MC
C|USter _]EtS can be 3 5[ o seeded cone R, = 0.4 | T o seeded cone Regne= 0.4
estimated with test B lE & L
: : L9 et 0ne 0 [ e LT T e
variable ¥ (below) 0 Lr%_n_(;,;?‘@wi‘m» PITERES | | 1o ;f@f%:-ngid?*‘r“?g
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Experimenter’s View on Jets

longitudinal energy leakage s ‘ !
detector signal inefficiencies (dead channels, HV...) ~| A
pile-up noise from (off- and in-time) bunch crossings — " = A
electronic noise 3 I
calo signal definition (clustering, noise suppression ,...) e T T
dead material losses (front, cracks, transitions:..) I’
I !
{

3
detector response characteristics (e/h # 1) ::
jet reconstruction algorithm efficiency §
jet reconstruction algorithm efficiency 3 I q gll
added tracks from in-time (same trigger) pile-up event S l !
added fracks from underlying event / % : /
lost soft tracks due to magnetic field L

physics reaction of interest (interaction or. parton level)

=
_Q/
=

Desirable to factorize the calibration and corrections dealing
with these effects as much as possible!
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Jet Calibration Strategies

Essentially, there is no universal model for jet calibration
- Immediate consequence from the fact that there is no universal jet finder (or jet
finder configuration) appropriate for all physics reconstruction/analysis
- But there two general strategies
Publications often refer to jets corrected to parton level
- Maybe not well-defined concept in pp, more useful in e*e” or deep inelastic scatt.
At LHC/ATLAS jets are foremost calibrated to the particle (hadron) level

- First aim to reconstruct the energy carried by particles into the detector
(calorimeter)

Needs detailed and most accurate detector signal simulations for test-beams
and physics processes

- Link to interaction physics needs full modeling of collision processes
Needs all particles, not only hard scatter fragments
Factorize jet calibration as much as possible
- Better control of systematics
Can even use hadron test-beams to a point
1 N |

-3
”
~

Two models (explored in ATLAS):
Model I: Calibration in jet context
First find jet, then calibrate, then correct if needed
Model II: Calibration in cluster context
Calibrate calorimeter signals, then find jet, then correct (likely needed)
Local hadronic calibration plugs in here!
Best calibration likely a combination of both models
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Full Calibration in Jet Context

energy scale signals in the calorimeter

- Assumes that all elementary signal
corrections (electronics etc.) are taken
care of

- Relative mis-calibration between mput
to jet finder can O(30%) or more in
non-compensating calorimeters

e Can be a problem especially for kT

— Best for compensating
calorimeters, as basic energy
scale is ~hadronic scale

Then calibrate it

- Complex signal weights applied to cell

signals in jet (default "H1-style”)
— Lower level of factorization of jet
reconstruction

e Many corrections absorbed in a
few numbers
- Feedback of calibrations to basic
signals (jet constituents) for missing
ET calculations etc.

Apply final Jet Energy Scale (JES)
corrections

— Correct for different algorithm, jet S|ze
calorimeter signal definition

D.Lelas (University of Victoria)

i Cluster Context Jet Calibration

Find the jet using basic (electromagnetlc)

: Calibrate calorimeter signals first as much

l PEEY -1 i P8 abl_ . __ £=__ _1 = _ 8
= A4S pOsSsipie, then 1ina jetcts

- Detector motivated (use measured signal
shapes)
Applies calibration in the context of a

specific calorimeter signal definition
(topological clusters in ATLAS)

No jet context needed
Provides calibrated input to jet finding
Better for kT
- Needs final jet energy scale corrections
Calibration derived from single particles
Feedback of final corrections for
missing ET calculations etc.
- High level of factorization,
better control of systematics (?)
To be fully investigated

Prowdes hadronic calibration outside of jet
context
Local Hadronic Calibration in ATLAS
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L. Tower Jets

~
CzlcCells ‘

(em scale)

Tower Building

(AnxAg=0_1x0.1._non-discriminant)

CaloTowers ‘

Jet Reconstruction Sequences

II. Cluster Jets

CaloCells

(em scale)

II1. Cluster Jets

CaloCells

(em scale)

T
Topological Clustering
{includes noise suppression)

1
| opological Clustering
(includes noise suppression)
'

h 4

CaloClusters

{apply c2ll signal weighting dead material corrections, etc )

¥
~ =,
CaloClusters
(em scale)
kS A

Cluster Classification
(identify em type clusters)

CaloClusters
(em scale, classified)

. S

Hadronic Cluster Calibration

-~ -,

CaloClusters

{em scale) (em scale E>0) {locally calibrated, E>0)
'\ ) . A
Tower Noise Suppression
(cancel E<0 towers by re-summation)
ProtoJets
(E=>0,em scale)
!
Jet Finding Jet Finding Jet Finding
(cone, k1) (cone K1) {cone, K7}
\ I
12 v
Calorimeter Jets Calorimeter Jets
{em scale) (em scale)

Jet Based Hadronic Calibration

J

nderlying event, physics environment, etc.)

(cell signal weighting in jets ete.)

Calorimeter Jets
(fully czlibraled had scale)

et Energy Scale Carrection

Physics Jets

(calibraled tc particle level)

In-situ Calibration

S

noise, pile-up, algorithm effects, etc.

Refined Physics Jet

(calibrated to interaction level)

Jet Based Hadronic Calibration

icell signal weighting in jets etc.)

Calorimeter Jets
(fully calibrated had scale)

J

et Energy Scale Corrections

(ncise, pile-up, algorithm effects, elc.)

Physics Jets
[calibrated to parficle lzvel)

In-situ Calibration

(uncerying event, physics ervirorment, etc )

Refined Physics Jet

(calibrated o interactior level)

r

Calorimeter Jets
(fully calibrated had scale)

Jet Energy Scale Corrections

(noise, dile-up, algorithm effects. etc.

Physics Jets

(calibrated to partice level)

In-situ Calibration

Refined Physics Jet

(cal brated to interaction level)

(underlying event. physics environment, etc.)
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Jet Reconstruction with first data in ATLAS

Full jet reconstruction

;
sequence in ATLAS

Jets are made from calo-
towers, uncalibrated and
calibrated topological
clusters

Reconstruction (software)
domains are also indicated
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Refined JES Corrections

Further jet-by-jet corrections improving the reiative energy resolution

- e.g. jet shapes in calorimeters
Energy density in narrow jets, for example

- Use of reconstructed tracks from the inner detector (example below)

- Can be applied after any kind of calibration

- Need to study factorization/overlap in corrections from various detectors
Avoid double counting
Establish common basic energy scale

f _ pT,track
Jets with [n| < 0.7 and 40 < p; <60 GeV trk

pT,calo —

§ OO gy rong arasne |& T amaswe ] 820F Lo AILAS MC |
S “irk gc: . AS MC e~ / AS MC 2 C e e Y. AS MC
£ 1600 —|:| 0.35 —> 0.45 - [ ©020=f, <042 | £1800 F[] 0.35 - 0.45
] I <c L C [ .
1400 __|:| 0.85 = 0.95 o A\ voa2<g<oss " qg00 ECT 085095
g =T B 0.55<f,< (.65 s
1200 | o -\,\6& | 1400k
: I S e | 1200F
1000 | e -i o .
( s 1000 F
300 f+——.-__.__—c— ;'—%_ﬁf C
I 800
400 - i 7‘/ £ 076<f <083 1 400
- ~ J II ::J {" C II' -1 =
200 - ;{f 4 083 <f, <104 ] 200
- L _-‘]D o e b v by R BT B _: I
-30 30 100 200 300 400 500 600 30 -20 -10 0 10 20 30
2. (GeV) Ap, (GeV)
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Requirements For Initial Jet Reconstruction

Need flat jet response quickly
- Allows physics groups to start serious work
Non-optimal resolution initially
- Allows to show jet response publicly rather soon
Just be honest about the errors
Will improve with increasing understanding of the detector anyway
- Helps evaluating the detector performance in general

Larger “signal integration” volume in jet context has diagnostics power
beyond detector (calorimeter) signal objects

Corresponding calibration should not be MC based
- Understandings simulated response will take time
Physics models
Theoretical understanding of hard scattering at LHC energies
Fragmentation
Soft physics behind UE/pile up
Detector/calorimeter response simulation
Adequateness of models
Detector status in initial run (dead cells, etc.)

Understanding of noise (electronics and pile-up) in initial run
conditions

Something straight forward and fast is needed
This does not mean that one gives up on MC based calibrations...
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Jet Calibration For First Data

>

"Local Hadronic"

time
local hadronic calibration
(highest MC quality requirements,

r
._._.

[

. PileUp correction
2. relative JES corrections
. absolute JES corrections

W

[

! "Sampling'

>| good understanding of calo
signals)

|

I

I

|

calorimeter sampling energy weighted calibration

o

. PileUp correction
2. absolute JES corrections

I 11} .
; Baseline"

>| (modest MC quality requirements, reasonable
| understanding of calorimeter signals)
I
I
I
|

“data only” calibration '

® >
B . 1. PileUp correction
| 2. relative JES corrections

| 3. absolute JES corrections
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(no use of MC at all, reasonable understanding of calorimeter signals)
I |

JES systematic error’

I N Relctive eneroy resolutio
: I I |
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Baseline “

Data Only” Jet Calibration

Task

JetEnergyScale (JES)

Tool

1 PileUp Subtraction

El{cet (njet ? ¢jet ) — E({et (njet 2 (ojet)
_ﬁ(;”b (Nvtx 271 jet ¢jet) | A??Z

minbias events
(determine E/Et density
in pile-up as function of
# vertices)

2 Relative response
corrections (n,P)

Ejet _

rel

S0 ®0) EL (1,00 90,00)

di-jet p; balance

(equalize jet response of
calorimeter system with
respect to central region
in slices of @)

3 Absolute energy
scale corrections

rec rel

Eje[ — é(pt/itel 9) ® Eje[

Y/ Z-jet p; balance in
direct photon
production

(correct JES from py
balance with y/Z, as
function of jet pT etc.)

D.Lelas (University of Victoria)

Jet Reconstruction with first data in ATLAS
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In-situ studies using QCD jet events

§ 088 ATLAS MC
$ 0.86 )
it ﬁ{‘ &;P Calorimeter response
o H # “1":,,! T fiff pr(reco)/ps(truth) .for. J.ets at
orsfl | i ! + | <€ EM scale reveals significant
0.76 1o _— S g .
B # , o s f variations wlth Njet (cracks and
- : " { dead-material regions...)
0.7
0.68 ﬁ{ 1}
066 00 il | L | | il
4 =3 -2 1 4
n | a F
Jet - *
S ATLAS * :
2 L L I
E 10° = y s
3 ) -
Integrated luminosity required e « 1 °
to reach 0.5% precision (pr 10 L Applied cuts:
balance fit mean) for various S * A9>3  Nets=2
- - > 1= 1. = Ap>3 2<Nets <4
pr ranges in the region = e ,
. ] 10_1?1 s AG>3  Nets=2
O.7<n<0.8 Wlth dlfferent E . e NoAdcut, Njets=2
i E
selection cuts 1050650650000 50000 706600606 1000
(P, ;+ Pro)/2, GeV
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In-situ studies using y/Z-jet events
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- Pioneered by D@ collaboration
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Conclusions

¥ Rich program of jet physics at LHC
¥ Various jet algorithms considered in ATLAS
- popular choices (seeded cone and k; recombination)
¥ Two principal models of hadronic calibration
- jet context with several implementations ("H1 style”
cell signal weights, sampling layer weights)
- Local hadronic calibration in cluster content
- activity in refined jet-by-jet corrections (e.g. with tracks)

¥ Jet reconstruction performance evaluation with
LHC data coming

- Quite a few handles
- robust/data-driven (coarse) calibration at the beginning

Many Thanks to all members of the
ATLAS jet working group




