

Cross section Measurement of $pp \rightarrow Z+bb, Z \rightarrow \ell \ell \text{ process at CMS}$

Aruna Kumar Nayak TIFR, Mumbai, India (On behalf of CMS Collaboration)

Physics at LHC, Split

Introduction

- Measurement of Zbb production is an important test of QCD calculation
- $\begin{array}{ll} \succ & \mbox{Background to Higgs discovery channels at LHC,} \\ & \mbox{like SM H} \rightarrow ZZ \rightarrow 4\ell, \\ & \mbox{SUSY bb} \Phi, \, \Phi \rightarrow \tau\tau \, (\mu\mu) \end{array}$
- > Z + 1 b-jet has been measured both at CDF & D0
- The possibility of observing and measuring the production of Z + 2 b-jet at LHC has been studied aiming at early 100 pb⁻¹ of CMS data.

Dominant at LHC

~ 15% of bbZ total σ

Cross section and Event generation

Signal *ll*bb (Zbb) :

CompHEP events with $p_T(b) > 10 \text{ GeV}$, $|\eta|(b) < 10$, $m_{\ell\ell} > 40 \text{ GeV}$, $|\eta|(\ell) < 2.5$ were generated and fully simulated in CMS 100 pb⁻¹ calibration and mis-alignment

Cross section calculated using MCFM, NLO σ ($\ell\ell bb$) = 45.9 pb , ℓ = e, μ, τ PDF : CTEQ6M, scale μ_R = μ_F = M_Z

LO cross section calculated using PDF : CTEQ6L1 and same values for scale K (NLO) = 1.51

Cross section and Event generation

Backgrounds

tt~ + n jets, n >= 0 : Generated using ALPGEN Cross section normalized to NLO inclusive tt~ cross section 840 pb

$\ell\ell$ cc + n Jets, n>= 0 (Zcc) :

Generated using ALPGEN Normalized on NLO σ (using MCFM) 13.29 pb, K factor = 1.46 with cuts : $p_T(c) > 20$ GeV, $|\eta|(c) < 5$, $m_{\ell\ell} > 40$ GeV

$\ell\ell$ + n Jets, n >= 2, (Zjj) :

Generated using ALPGEN Normalized on NLO σ (using MCFM) 714 pb , K factor = 1.02 with cuts : $p_{T}(j)$ > 20 GeV, $|\eta|(j)$ < 5, $m_{\ell\ell}$ > 40 GeV

Initial Event selections:

Trigger selection : single isolated electron or muon Level-1 threshold 12 GeV, 7 GeV & High-Level threshold 15 GeV, 11 GeV Corresponds to low luminosity period L = 10^{32} cm⁻²s⁻¹

Lepton Selection :

Two high p_T , isolated, opposite charged leptons $|\eta|(e) < 2.5, |\eta|(\mu) < 2.0,$ lepton $p_T > 20$ GeV

Jets Selection :

Two or more jets with corrected $E_T > 30 \text{ GeV}$, $|\eta| < 2.4$ Jet corrected using Monte Carlo jet energy correction.

Lepton, jet selections + double b-tagging with b-discriminator > 0.

b-discriminator of 2nd highest discriminator jet

Jets are tagged using "Track Counting b-tagging" Which uses the 3-dimentional impact parameter significance, of 3rd highest significance track, as the b-tagging discriminator

Effective to supress the Z+jets backgrounds.

E_T^{miss} selection

Lepton, jet selections + double b-tagging with b-discriminator > 0

Event Selection details

Two Leptons, $p_T > 20$ GeV, $|\eta|(e) < 2.5$, $|\eta|(\mu) < 2.0$ Two or more Jets , $E_T > 30$ GeV , $|\eta| < 2.4$ Two b-tagged Jets Missing $E_T < 50$ GeV

Initial and final cross sections after all selections

Process Name	σ NLO (pb)	Final σ (fb)	
		Electron	Muon
Zbb	46	176	212
tt∼ + jets	840	173	178
Z+jets	714	5.5	5.5
Zcc+jets	13.3	4.3	5.1

events scaled to 100 pb⁻¹

29th Sep. - 4th Oct. 08

Dilepton mass region Signal : 75-105 GeV (Z) Side band : 0-75 GeV & 105 – above (no Z)

> $N_{Z}(tt) = (\varepsilon_{Z}(tt)/\varepsilon_{noZ}(tt)) \times N_{noZ}(tt)$ $\Delta N_{Z}(tt)/N_{Z}(tt)= 1/\sqrt{N_{noZ}(tt)}$

 $N_Z(tt)$ = expected no. of tt~ events in signal region $N_{noZ}(tt)$ = measured no. of tt~ events out side signal region

 $\varepsilon_{z}(tt)$ = selection efficiency of tt~ in signal region $\varepsilon_{noZ}(tt)$ = selection efficiency of tt~ outside signal region $\Delta N_{z}(tt)$ = uncertainty of the expected number of tt~ events in the signal region. Uncertainty on $\varepsilon_{z}(tt)/\varepsilon_{noZ}(tt)$ is negligible compared to the statistical uncertainty on N_{noZ} .

Uncertainty due to Background and double b-tagging.

 N_{Zbb} and $\Delta N_{Zbb}~$ are determined as follows.

 $N_Z^{before b-tag} = N_{Zjj} + N_{Zcc} + N_{Zbb}$

 $N_{Z}^{after b-tag} = \epsilon_{\ell} X N_{Zjj} + \epsilon_{c} X N_{Zcc} + \epsilon_{b} X N_{Zbb}$

Where,

 $N_Z^{before \ b-tag}$ = measured number of $Z/\gamma^* \rightarrow \ell \ell$ events after all selections except b-tagging under Z mass peak (75-105 GeV). Contribution of tt~ is negligible (~1%).

 $N_Z^{after\ b\text{-}tag}$ = measured number of $Z/\gamma^* \to \ell \ell$ events after all selections including b-tagging with tt~ subtracted

 N_{Zjj} is unknown number of $\ell\ell\text{+jets}$ (u, d, s, g) events before double b-tagging.

 N_{Zcc} is unknown number of Zcc events before double b-tagging. N_{Zbb} is unknown number of Zbb events before double b-tagging.

 $\epsilon_{b}, \epsilon_{c}, \epsilon_{\ell}$ are the efficiency of double b-tagging for Zbb, Zcc and Z+jets events (Ratio of number of events before and after double b-tagging)

(after all selections except b-tagging)

Using D0 analysis approach, Use the Ratio

 $R = \frac{\sigma(Zcc)}{\sigma(Zjj)} \times \frac{\varepsilon_{Zcc}^{sel}}{\varepsilon_{Zjj}^{sel}} = 0.046 \pm 0.002 \quad (systematics)$

 $\frac{\varepsilon_{Zcc}^{sel}}{\varepsilon_{Zii}^{sel}}$ is ratio of selection efficiencies

Solving the equations

$$N_{Zbb} = \frac{N_Z^{after \ b-tag} + R \times N_Z^{after \ b-tag} - \varepsilon_\ell \times N_Z^{before \ b-tag} - \varepsilon_c \times R \times N_Z^{before \ b-tag}}{\varepsilon_b + \varepsilon_b \times R - \varepsilon_c \times R - \varepsilon_\ell}$$

The Uncertainties on N_{Zbb} is calculated from uncertainties of N_Z^{after b-tag} (uncertainty due to tt~ subtraction), δR and uncertainties on ϵ_b , ϵ_c , ϵ_ℓ

29th Sep. - 4th Oct. 08

Total Uncertainty on Measurement

Source of uncertainty	Value used (%)	δ (σ(Zbb)) (%)
Jet energy scale (JES)	7	7.6
Type 1 missing E_T scale	10 (unclustered E_T^{miss}) + 7 (JES)	7.4
MC p_T^{jet} , η^{jet} dependence	-10, +0	-10, +0
b-tagging of b-jets ($\delta\epsilon_{b}$)	8	16
mistagging of c-jets ($\delta\epsilon_c$)	8	0.5
mistagging of light jets ($\delta\epsilon_\ell$)	7.6	0.5
$N_z^{after b-tag}$ due to tt~ subtraction	4	4.6
R (Zcc / Zjj)	5	0.4
lepton selections	0.5	0.5
luminosity	10	10

Total cross section is expected to be measured in 100 pb⁻¹ of data with uncertainty $\delta \sigma = +21\%$, - 25% (syst.), +/- 15% (stat.)

- ➤ The possibility to measure the bbZ, Z → ℓℓ process at CMS has been studied, aiming the early 100 pb⁻¹ of data, with robust selection of leptons and jets.
- Possible methods to measure backgrounds from data has been discussed.
- The statistical and systematic uncertainties has been studied.

backup

Systematics due to JES and MET scale

Uncertainty due to JES : Calculated by shifting Jet Energy by 7% Rel. Uncert. = $(\epsilon_{max} - \epsilon_{min})/2\epsilon$ Uncertainty due to MET scale : Calculated by shifting Raw MET unclustered in jets 10% and corrected Jet energy by 7% Rel. Uncert. = $(\varepsilon_{max} - \varepsilon_{min})/2\varepsilon$

$$\mathsf{E}_{\mathsf{T}(\mathsf{x},\mathsf{y})}^{\mathsf{miss.corr}} = \alpha_{\mathsf{calo}} \mathsf{X} \mathsf{E}_{\mathsf{T}(\mathsf{x},\mathsf{y})}^{\mathsf{miss.calo}} + \Sigma_{\mathsf{jets}} (\alpha_{\mathsf{jet}} \mathsf{X} \mathsf{E}_{\mathsf{T}(\mathsf{x},\mathsf{y})}^{\mathsf{jet.corr}} - \alpha_{\mathsf{calo}} \mathsf{X} \mathsf{E}_{\mathsf{T}(\mathsf{x},\mathsf{y})}^{\mathsf{jet.raw}})$$

 α_{calo} = α_{jet} = 1 in ideal calibrations. α_{calo} was varied to 10% and α_{jet} was varied to 7% .

Total systematic uncertainty due to JES is 7.6%

Total systematic uncertainty due to Missing ET scale is 7.4%

Uncertainties due to lepton selections :

total efficiency for lepton $\varepsilon_{total} = \varepsilon_{off-line}^2 X \varepsilon_{trigger}$ with 10 pb-1 the syst. uncert. of ε_{total} on e⁺e⁻ final state is 1% . (CMS PAS EWK-07-001) for 100 pb-1, rescaled by $\sqrt{10} => 0.3\%$

for $\mu^+\mu^-$ the systematic uncertainty is 0.5% We use 0.5% for both ee and $\mu\mu$ final state.

Uncertainty due to MC \textbf{p}_{T} and η of jet dependence for signal events

It is defined from the comparison of ratio of LO and NLO MCFM cross sections for different set of cuts on p_T (jet) (10 and 30 GeV) and η (jet) (10 and 2.4). p_T (jet) > 10 GeV, $|\eta|(jet) < 10$: CompHEP generator level cuts p_T (jet) > 30 GeV, $|\eta|(jet) < 2.4$: experimental like selection cuts

The LO ratio is 10% bigger than the NLO ratio.

Statistical Uncertainty :

Defined as $\Delta N_{sel} / N_{sel} = 1 / \sqrt{N_{sel}}$, where $N_{sel} = 46$, measured number of events after all selections.

 $=> \delta N_{sel} = 14.7\%$

$$\epsilon_{\rm b}$$
 = 0.0654, $~\epsilon_{\rm c}$ = 0.0051, ϵ_{ℓ} = 0.00025

 $N_{Zcc} = R X N_{Zjj}$ The uncertainty on $\frac{\sigma(Zcc)}{\sigma(Zjj)}$ ratio is +/- 3% due to scale variation around the central value $\mu_R = \mu_F = M_Z$ from $M_Z/2$ to $2M_Z$

The uncertainty on
$$\frac{\varepsilon_{Zcc}^{sel}}{\varepsilon_{Zjj}^{sel}}$$
 due to JES is +/- 1.6% and E_T^{miss} scale is +/- 3.6%

 $\delta N_z^{after b-tag} = 4\%$, uncertainty on $N_z^{after b-tag}$ due to tt~ subtraction.

Uncertainties on $\epsilon_{\text{b,c,l}}$ are approximated as 2X $\Delta\epsilon_{\text{b,c,\ell}}$

 $\begin{array}{l} \delta\epsilon_{b} = 8\% \mbox{ (per jet) (CMS PAS BTV-07-001)} \\ \delta\epsilon_{c} = 8\% \mbox{ (per jet) used the same value as for b-jets.} \\ \delta\epsilon_{\ell} = 7.6\% \mbox{ (per jet) (CMS PAS BTV-07-002)} \end{array}$