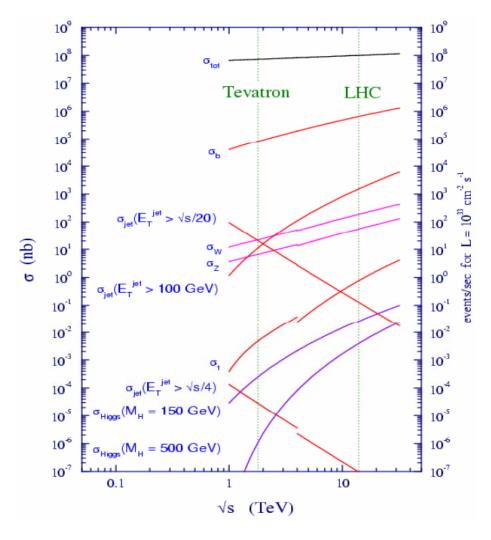
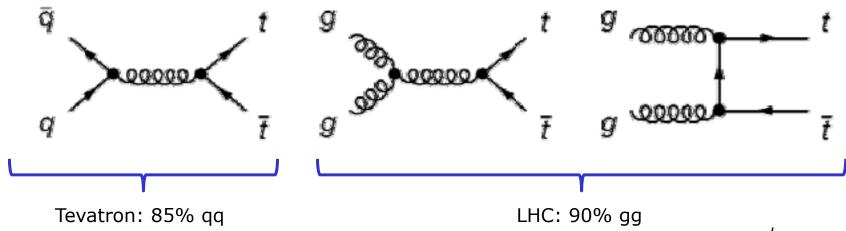

# Measurement of $t\bar{t}$ production in ATLAS


W. Verkerke (NIKHEF)

# Introduction – The ATLAS experiment

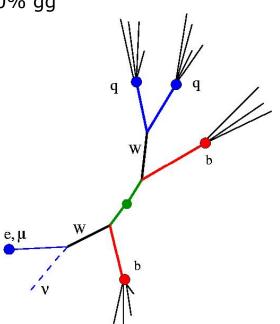
 ATLAS is a general purpose detector with layers of tracking, calorimetry and muon detection




# Introduction – tt production at the LHC



- ttbar production cross section
  - − ~7 pb at Tevatron
  - ~350 pb at LHC (10 TeV)
  - ~830 pb at LHC (14 TeV)
- Amounts to 1 tt/sec at L=10<sup>33</sup>
- Tevatron → LHC
  - Signal x 100
  - Background x 10
  - Use of b-tagging not essential to establish signal at LHC

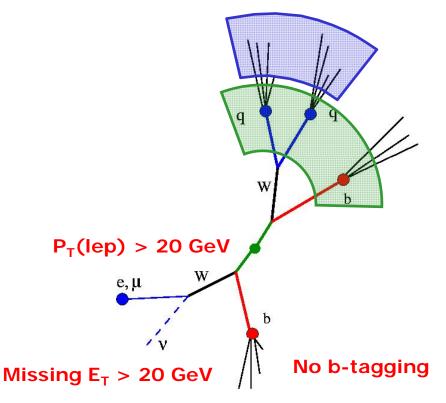

# Top quark pair production and decay

Contributing processing in pp collisions



- Decay:  $t \rightarrow Wb$ ,  $W \rightarrow qq (2/3)$  or  $W \rightarrow lv (1/3)$
- Three types of final states
  - 0 lepton  $(4/9) \rightarrow b(qq) + b(qq)$
  - 1 lepton (4/9)  $\rightarrow$  b(lv) + b(qq) Covered in this
  - 2 lepton  $(1/9) \rightarrow b(lv) + b(lv)$  presentation

Covered in this presentation




# What can you do with early tt events

One-lepton ttbar signature rich in signatures, useful in many ways for validation and calibration ATLAS • • • Cone ∆R=0.40 Calibrate light jet energy scale Impose W mass constraint on M(jj), exploit low b abundance W→qq due to small V<sub>ub</sub> Estimate b-tagging ε Exploit double b-tag Miscalibrated Busy environment detector or escaping 'new' particle Perfect detector Calibrate missing transverse energy Study trigger performance Exploit multiple triggerable signatures

## One-lepton channel – Event selection

Event selection for one lepton channel



#### Muon channel

| Sample                    | default |  |  |  |  |
|---------------------------|---------|--|--|--|--|
|                           |         |  |  |  |  |
| tīĪ                       | 3274    |  |  |  |  |
| hadronic tī               | 35      |  |  |  |  |
| W+jets                    | 1052    |  |  |  |  |
| single top                | 227     |  |  |  |  |
| $Z \rightarrow ll + jets$ | 78      |  |  |  |  |
| $W b\bar{b}$              | 25      |  |  |  |  |
| $W c\bar{c}$              | 26      |  |  |  |  |
| WW                        | 4       |  |  |  |  |
| WZ                        | 3       |  |  |  |  |
| ZZ                        | 0.4     |  |  |  |  |
| Signal                    | 3274    |  |  |  |  |
| Background                | 1446    |  |  |  |  |
| S/B                       | 2.3     |  |  |  |  |
|                           |         |  |  |  |  |

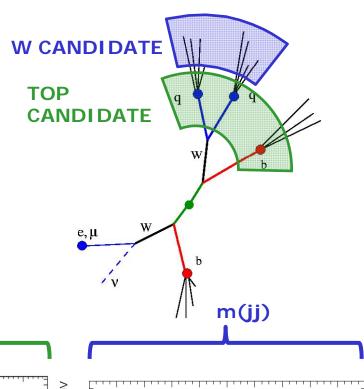
#### Electron channel

| Sample                  | default |  |  |  |  |
|-------------------------|---------|--|--|--|--|
| tř                      | 2555    |  |  |  |  |
| hadronic tt             | 11      |  |  |  |  |
| W+jets                  | 761     |  |  |  |  |
| single top              | 183     |  |  |  |  |
| $Z\rightarrow ll$ +jets | 107     |  |  |  |  |
| $W b\bar{b}$            | 17      |  |  |  |  |
| $W c\bar{c}$            | 19      |  |  |  |  |
| WW                      | 4       |  |  |  |  |
| WZ                      | 2       |  |  |  |  |
| ZZ                      | 0.3     |  |  |  |  |
| Signal                  | 2555    |  |  |  |  |
| Background              | 1104    |  |  |  |  |
| S/B                     | 2.3     |  |  |  |  |

 $\varepsilon$ (ttbar) 23.6%  $\varepsilon$ (ttbar) =18.2%

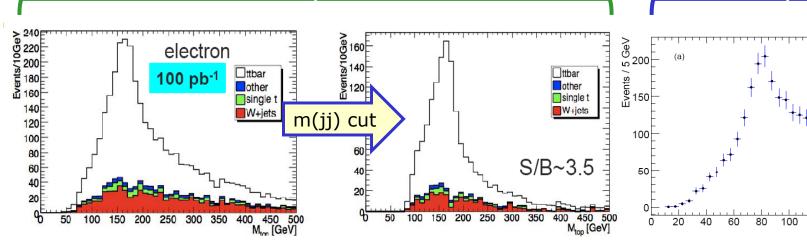
|                       | Trigger | Lepton  | ÆΤ      | Jet req. (I) | Jet req. (II) | Combined |
|-----------------------|---------|---------|---------|--------------|---------------|----------|
|                       | eff (%) | eff (%) | eff (%) | eff (%)      | eff (%)       | eff (%)  |
| $t\bar{t}$ (electron) | 52.9    | 52.0    | 91.0    | 70.7         | 61.9          | 18.2     |
| tt (muon)             | 59.9    | 68.7    | 91.6    | 65.5         | 57.3          | 23.6     |

**[KHEF** 


#### One-lepton channel – Simulation of signal and backgrounds

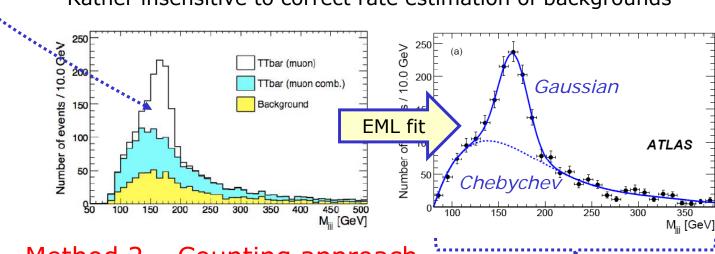
- ttbar signal MC@NLO
  - Cross check with Alpgen in systematic studies
- W+jets background Alpgen
  - Expected to be largest background
  - NB: Large uncertainty on cross section of W+4 jets.
     (Assuming 50% error for systematic studies)
- QCD multi-jet backgrounds
  - Very large cross section (pp → bb O(100 $\mu$ b), but very few events pass selection (need lepton, missing E<sub>T</sub> of 20 GeV each)
  - Can distinguish contribution due to non-prompt leptons (mostly semileptonic (b) quark decay) and fake leptons (reconstruction mistakes)
  - Estimated  $\sim 1.10^{-3}$  reconstructed electron per jet from both non-prompt and fake leptons.
  - Use above estimate to calculate fraction of QCD multi-jet events that pass event selection → Smaller than W+jets estimate

#### One-lepton channel – Top reconstruction and selection


- Pick three jets with highest summed pT as hadronic top candidate
- Purification of sample through requirement |m(jj)-m<sub>W</sub>|<10 GeV for one of the 3 jet pairs of the top candidate
  - Also central top quarks candidates are more pure  $|\eta_{jet}| < 1$  for all 3 jets

m(jjj)




**ATLAS** 

M. in top candidate [GeV]



## One-lepton channel – Cross section extraction

- Method 1 Likelihood fit to m(jjj) distribution
  - Counts only events reconstructed with m(jjj) close to m(top)
  - Exploits information in shapes of m(jjj).
  - Sensitive to correct estimation of efficiency of picking 'correct' 3-jet combination
  - Rather insensitive to correct rate estimation of backgrounds



- Method 2 Counting approach
  - Count all events in full m(jjj) range, subtract estimated backgrounds
  - Sensitive to correct background estimation
  - Less sensitive to correct description of m(jjj) shape, efficiency of top candidate picking algorithm

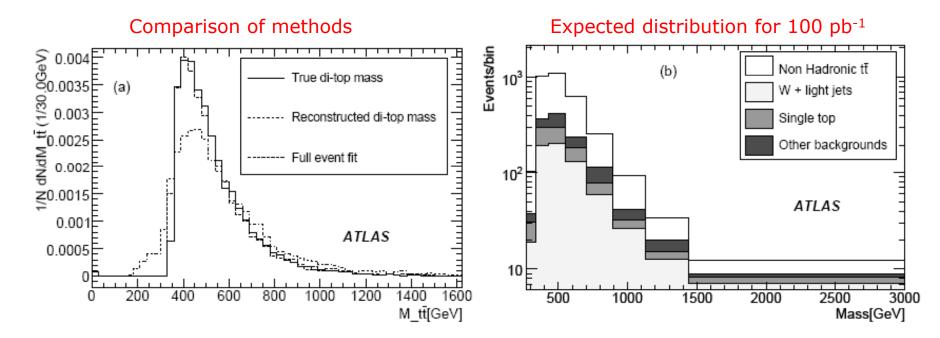
    Wouter Verkerke, NIKHEF

#### One-lepton channel – Summary of cross-section uncertainties

#### Systematic uncertainty by source

|                           |                           | Likeliho | od fit | Counting method (elec) |          |  |
|---------------------------|---------------------------|----------|--------|------------------------|----------|--|
|                           | Source                    | Electron | Muon   | Default                | W const. |  |
|                           |                           | (%)      | (%)    | (%)                    | (%)      |  |
| Fit counts<br>less events | Statistical               | 10.5     | 8.0    | 2.7                    | 3.5      |  |
| less everits              | Lepton ID efficiency      | 1.0      | 1.0    | 1.0                    | 1.0      |  |
|                           | Lepton trigger efficiency | 1.0      | 1.0    | 1.0                    | 1.0      |  |
| Counting                  | 50% more W+jets           | 1.0      | 0.6    | 14.7                   | 9.5      |  |
| method does not measure   | 20% more $W$ +jets        | 0.3      | 0.3    | 5.9                    | 3.8      |  |
| background                | Jet Energy Scale (5%)     | 2.3      | 0.9    | 13.3                   | 9.7      |  |
| _                         | PDFs                      | 2.5      | 2.2    | 2.3                    | 2.5      |  |
|                           | ISR/FSR                   | 8.9      | 8.9    | 10.6                   | 8.9      |  |
| Shape of m(jjj) dist      | Shape of fit function     | 14.0     | 10.4   | -                      | -        |  |

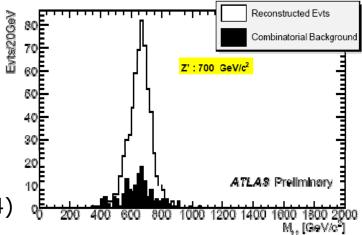
#### Combined numbers


uncertain

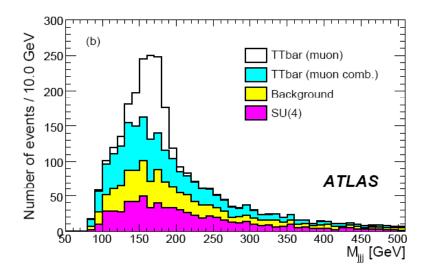
Likelihood method:  $\Delta \sigma / \sigma = (7(\text{stat}) \pm 15(\text{syst}) \pm 3(\text{pdf}) \pm 5(\text{lumi}))\%$ 

Counting method:  $\Delta \sigma / \sigma = (3(stat) \pm 16(syst) \pm 3(pdf) \pm 5(lumi))\%$ 

#### One-lepton channel - Differential cross section in m(tt)


- Differential cross section in mass of tt system
  - Good check of SM physics, sensitivity to certain types of BSM physics
  - Requires reconstruction of neutrino from W→Iv
- Two approaches
  - 'Reconstructed di-top mass'. Assume missing E<sub>T</sub> is neutrino p<sub>T</sub>, use W mass constraint to calculate p<sub>T</sub> of neutrino
  - 'Full event fit'. Kinematic fit that apply all W, top mass constraints



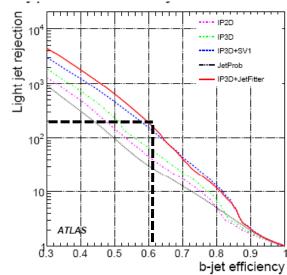

## Sensitivity to new physics contributions

 Several types of BSM physics can produce events that give rise to measurable signal or background enhancements in tt one-lepton channel

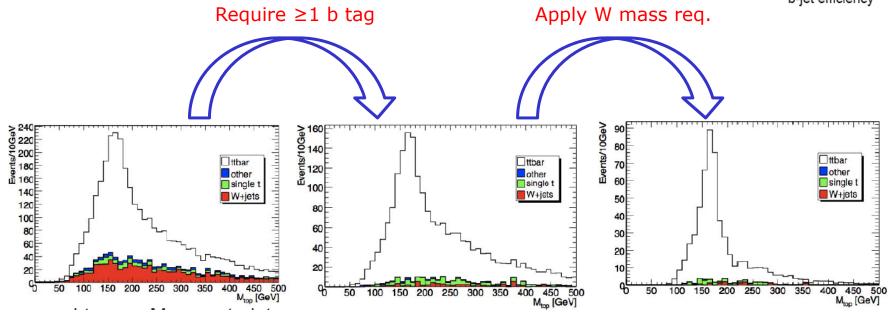
- Example 1: Z' (700 GeV) → ttbar



Example 2: low-mass SUSY (point SU4)

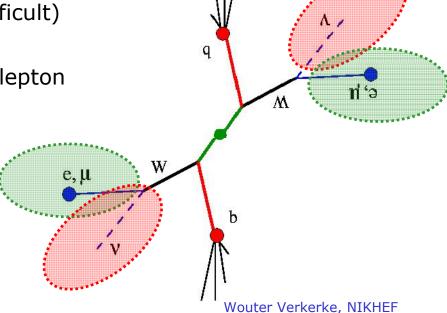



| Event type |                      | ectron ana<br>igger+Selec | •   | Muon analysis Trigger+Selection |          |           |  |
|------------|----------------------|---------------------------|-----|---------------------------------|----------|-----------|--|
| • 1        | $W$ const. $m_t$ win |                           |     |                                 | W const. | $m_t$ win |  |
| SU1        | 53                   | 9                         | 1   | 64                              | 12       | 2         |  |
| SU2        | 10                   | 2                         | 0.5 | 13                              | 3        | 0.7       |  |
| SU3        | 108                  | 22                        | 4   | 124                             | 26       | 4         |  |
| SU4        | 1677                 | 541                       | 155 | 2141                            | 700      | 199       |  |
| SU6        | 29                   | 5                         | 0.6 | 35                              | 6        | 0.6       |  |
| SU8        | 27                   | 5                         | 0.6 | 33                              | 6        | 0.8       |  |


Wouter Verkerke, NIKHEF

# One-lepton channel – Effect of adding b-tagging

- ATLAS b-tagging: likelihood algorithm
  - weight w constructed from the results of the IP3D impact parameter and secondary vertex-based tagger.
  - Example operating point  $\varepsilon_b \sim 63\%$ ,  $R_u \sim 200$




Wouter Verkerke, NIKHEF

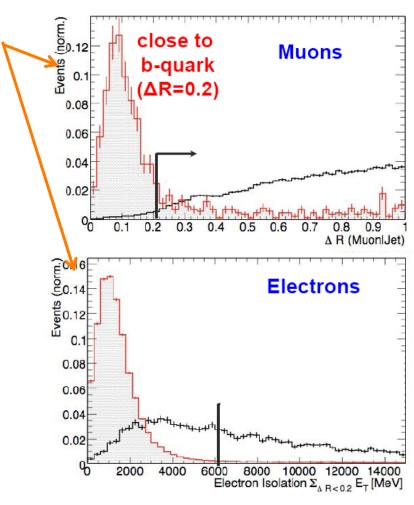


## Di-lepton channel – signal and backgrounds

- Signal signature
  - Pair of high p<sub>T</sub> isolated leptons (/+/-)
  - Large missing E<sub>T</sub> due to two escaping neutrinos
- Composition of backgrounds very different
  - QCD, W+jets mostly suppressed by 2-lepton requirement
  - But have Z(+jets) background producing isolated leptons (of which Z→ee,μμ is easily suppressed with m(//) cut, Z→ττ more difficult)
  - Must suppress 1-lepton ttbar where jet is reconstructed as lepton



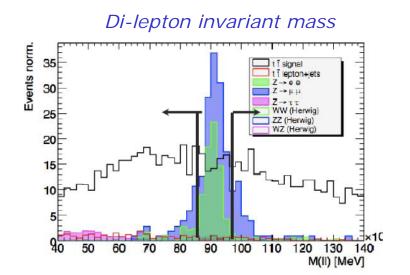
## Di-lepton channel – signal and backgrounds

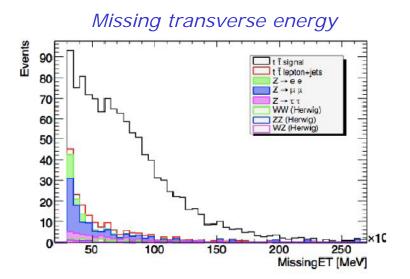

Select events with 'good' /+/- pair

Isolation criteria important to avoid picking up various types of

background with >=1 leptons from semileptonic (b) quark decay in jets

Expected event counts with I<sup>+</sup>I<sup>-</sup> lepton pairs at 100 pb<sup>-1</sup>


| Sample                        | еµ  | ee    | μμ    |
|-------------------------------|-----|-------|-------|
| tiī (signal)                  | 699 | 312   | 381   |
| tī (bkg)                      | 31  | 20    | 8     |
| $Z \rightarrow e^+e^-$        | 5   | 37418 | 0     |
| $Z \rightarrow \mu^+\mu^-$    | 153 | Q     | 51139 |
| $Z \rightarrow \tau^+ \tau^-$ | 249 | 101   | 159   |
| $W \rightarrow ev$            | 42  | 69    | 0     |
| $W \rightarrow \mu \nu$       | 152 | 0     | 40    |
| WW                            | 76  | 32    | 44    |
| WZ                            | 6   | 41    | 52    |
| ZZ                            | 1   | 25    | 31    |
| single top                    | 5   | 3     | 2     |

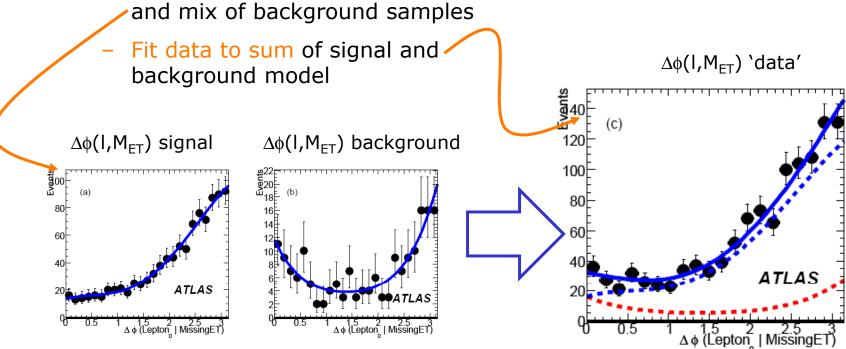



Wouter Verkerke, NIKHEF

# Di-lepton channel – cut-and-count analysis

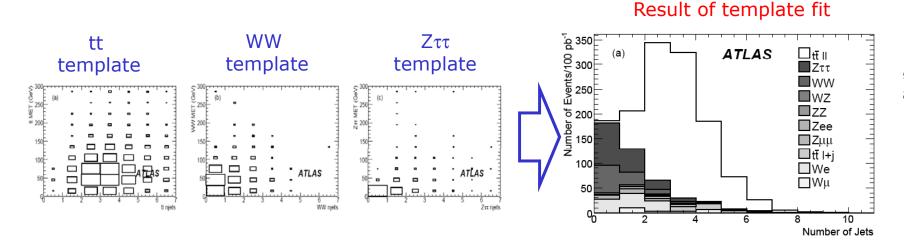
- Require minimum lepton p<sub>T</sub> of 20 GeV
- Require minimum missing E<sub>T</sub> of 30 GeV
  - Use 35/25 GeV when considering (ee,μμ)/eμ channels separately






Event counts after selection (100 pb<sup>-1</sup>)

| dataset     | $e\mu$ | ee   | μμ   | all channels |                                    |
|-------------|--------|------|------|--------------|------------------------------------|
| tī (signal) | 555    | 202  | 253  | 987          |                                    |
| ε [%]       | 20.2   | 14.7 | 18.3 | 17.9         |                                    |
| Total bkg.  | 86     | 36   | 73   | 228          | Dominated by tt 1-lepton           |
| S/B         | 6.3    | 5.6  | 3.4  | 4.3          | (17%) and $Z \rightarrow II$ (57%) |


#### Dilepton channel - Likelihood fit method

- Start with cut-and-count event selection
- Additionally exploit information in observables
  - Angle between highest pT lepton and Etmiss
  - Angle between highest pT jet and Etmiss
- Procedure
  - Parameterize signal, background distribution from signal sample
     and mix of background samples



## Dilepton channel – template method

- Use 2D distributions in [E<sub>T</sub>(miss),N(jets)] to disentangle signals and backgrounds
  - Use loose event sample (No cut-and-count preselection)
- Derive binned likelihood for data as a function of crosssection, acceptance, background normalization
  - Combined fit to eμ,ee,μμ channels
  - Systematic uncertainties on acceptance and template shapes are taken into account



#### Dilepton channel – Summary of cross section uncertainties

#### Overview of systematic uncertainties

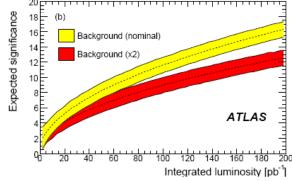
- Jet energy scale largest contributor

|                           | cut and count method |     |          |      | likelihood method |      |          |      |
|---------------------------|----------------------|-----|----------|------|-------------------|------|----------|------|
| $\Delta\sigma/\sigma$ [%] | еμ                   | ee  | $\mu\mu$ | all  | еμ                | ee   | $\mu\mu$ | all  |
| CTEQ6.1 set               | 2.4                  | 2.9 | 2.0      | 2.4  | 0.3               | 0.4  | 0.2      | 0.2  |
| MRST2001E set             | 0.9                  | 1.1 | 0.7      | 0.9  | 0.2               | 0.2  | 0.1      | 0.2  |
| JES-5%                    | -2.0                 | 0.0 | -3.1     | -2.1 | -5.4              | 1.1  | 4.9      | 8.3  |
| JES+5%                    | 2.4                  | 4.1 | 4.7      | 4.6  | 7.8               | 3.9  | -4.6     | -4,4 |
| FSR                       | 2.0                  | 2.0 | 4.0      | 2.0  | 0.2               | 0.4  | 0.0      | 0.3  |
| ISR                       | 1.1                  | 1.1 | 1.2      | 1.1  | 2.5               | 1.8  | 0.0      | 1.7  |
| parameters-1 $\sigma$     |                      |     |          |      | -3.0              | -0.2 | -2.1     | -1.8 |
| parameters+1 $\sigma$     |                      |     |          |      | 3.2               | 0.8  | 2.0      | 2.0  |

(Template method has included systematic uncertainties into fit)

#### Combined numbers

Cut and Count method:  $\Delta \sigma / \sigma = (4(stat)^{+5}_{-2}(syst) \pm 2(pdf) \pm 5(lumi))\%$ 


Template method:  $\Delta \sigma / \sigma = (4(\text{stat}) \pm 4(\text{syst}) \pm 2.(\text{pdf}) \pm 5(\text{lumi}))\%$ 

Likelihood method:  $\Delta \sigma / \sigma = (5(stat)^{+8}_{-5}(syst) \pm 0.2(pdf) \pm 5(lumi))\%$ 

#### Summary

- The expected uncertainty on a ttbar cross section measurement on 100 pb<sup>-1</sup> of data in either semi-leptonic and di-leptonic events is of the order of 10-15%
  - The errors are dominated by systematic uncertainties in all studied cases
  - For both the semi-leptonic and di-leptonic cross section measurements multiple methods have been developed with different sensitivities to various uncertainties
  - Both the semi-leptonic and di-leptonic channels are sensitive to effects from various types of BSM physics

 Even though the studies presented are done at 100 pb<sup>-1</sup>, it is clear from the signal statistics, that a first top cross section extraction is already feasible around 10 pb<sup>-1</sup>

