Diffractive and ultraperipheral physics with ALICE

- ALICE detector
- Diffractive gap trigger in ALICE
- Signatures of Pomeron/Odderon in pp
- Central diffractive production of χ_c in pp
- Exclusive vector meson production in PbPb
- Conclusions, outlook

The ALICE experiment

Acceptance central barrel

$$-0.9 < \eta < 0.9$$

Acceptance muon spectr.

 $2.5 < \eta < 4.$

ALICE diffractive gap trigger

→ additional forward detectors

(no particle identification)

$$1 < \eta < 5$$

 $-4 < \eta < -1$

 \rightarrow definition of gaps η_+ , $\eta_$ p-p luminosity L = 5x10³⁰cm⁻²s⁻¹:

→ one interaction/80 bunches diffractive L0 trigger (hardware):

Pixel or TOF mult

gap
$$\eta_+$$
: $3 < \eta < 5 \rightarrow \Delta \eta \sim 0.5$

gap
$$\eta$$
: $-2 < \eta < -4 \rightarrow \Delta \eta \sim 0.5$

high level trigger (software):

$$-3.7 < \eta < 5$$

ALICE central barrel particle identification

Particle identification by dE/dx in central barrel as function of momentum

Electron-pion separation in TRD as function of momentum

ALICE central barrel comparison to other LHC detectors

low magnetic field

	Magn. field (T)	P _T cutoff GeV/c	Material x/x0 (%)
ALICE	0.2-0.5	0.1-0.25	7
ATLAS	2.0	0.5 (0.08)	20
CMS	4.0	0.75 (0.2)	30
LHCb	4Tm	0.1	3.2

η-pt acceptance

 $\rightarrow low p_T trigger ?$

 \rightarrow good ALICE acceptance for ϕ , J/Psi, Ψ by electron decays $(p_T > 0 \text{ MeV/c})$

ALICE forward calorimeter

- neutron calorimeter on each side
 - Placed at 116 m from interaction region
 - Measures neutral energy at 0°
- Diffractive events:
 - $-pp \rightarrow ppX$: no energy in zero degree calorimeter
 - -pp → pN*X : energy in one calorimeter
 - $-pp \rightarrow N*N*X$: energy in both calorimeters

(no Roman pots for proton tagging)

ALICE diffractive physics

• ALICE acceptance matched to diffractive central production:

γ-pomeron, double pomeron, odderon-pomeron

Data taking:

pp @ L =
$$5x10^{30}$$
 cm⁻²s⁻¹
pPb @ L = 10^{29} cm⁻²s⁻¹
PbPb @ L = 10^{27} cm⁻²s⁻¹

Pomeron signatures

Compare pomeron-pomeron fusion events to min bias inelastic events

- 1) Enhanced production cross section of glueballs states: *study resonances* in central region when two rapidity gaps are required
- 2) Slope pomeron traj. $\alpha' \sim 0.25 \text{GeV}^{-2}$ in DL fit, $\alpha' \sim 0.1 \text{GeV}^{-2}$ in vector meson production at HERA, t-slope triple pom-vertex < 1GeV^{-2}
- \rightarrow mean k_t in pomeron wave function $\alpha' \sim 1/k_t^2$ probably $k_t > 1$ GeV
- \rightarrow $< p_T > secondaries in pomeron-pomeron <math>>$ $< p_T > secondaries min bias$
- 3) $k_t > 1$ GeV implies large effective temperature
 - $\rightarrow K/\pi$, η/π , η'/π ratios enhanced

Central exclusive $\pi^+\pi^-$ production at $\sqrt{s} = 63 \text{ GeV}$

Data taken by Axial Field Spectrometer at ISR $\sqrt{s} = 63$ GeV (R807) very forward drift chambers added for proton detection

3500 events/25 MeV

T.Akesson et al 1986:

Flavour independence: equal numbers of $\pi^+\pi^-$ and K^+K^- pairs for masses larger than 1 GeV

Signature Odderon cross section

Look at exclusive processes with rapidity gaps

Examples:

diffractive pseudo scalar and tensor meson production: C = +1 states

diffractive vector meson production: C = -1 states

→ measure cross sections

The hunt for the Odderon

- Production cross sections in pp at LHC energies
 - diffractive production: $\pi^0, \eta, \eta_c(J^{PC}=\bar{0}^+)$, $f0(0^{++})$, $a2(2^{++})$
 - → contributions from Photon-Photon, Photon-Odderon, Odderon-Odderon
 - Look for diffractive J/ Ψ production: $J^{PC} = 1^{--}$
 - → Photon-Pomeron, Odderon-Pomeron contributions
 - \rightarrow such an experimental effort is a continuation of physics programs carried out at LEP ($\gamma\gamma$) and HERA (γ -Odderon)

Diffractive J/Ψ production in pp at LHC

- First estimates by Schäfer, Mankiewicz, Nachtmann 1991
- pQCD estimate by Bzdak, Motyka, Szymanowski, Cudell

- Photon: t-integrated
$$\frac{d\sigma}{dy}\Big|_{y=0} \sim 15 \text{ nb} \quad (2.4 - 27 \text{ nb})$$

- Odderon: t-integrated
$$\frac{d\sigma}{dy}\Big|_{y=0}$$
 ~ 0.9 nb (0.3 - 4 nb)

At $L = 5x10^{30} \text{ cm}^{-2}\text{s}^{-1}$:

- \rightarrow 0.15 J/\Psi in ALICE central barrel in 1 s, 150k in 10⁶ s
- \rightarrow 9000 in e^+e^- channel in 10⁶ s
- \rightarrow identify Photon and Odderon contribution by analysing p_T distribution (Odderon harder p_T spectrum)

Signature Odderon interference

- Cross sections contain squared Odderon amplitudes
 - → Odderon-Pomeron interference!

$$d\sigma \sim |A\gamma(A_P + A_O)|^2 d^N q$$

 $\sim |A_P|^2 + 2Re(A_P A_O^*) + |A_O|^2$

- → look at final states which can be produced by Odderon or Pomeron exchange
- → find signatures for interference of C-odd and C-even amplitude

Interference signal

- Interference effects (relative contribution C = -1)
 - Asymmetries in $\pi^+\pi^-$ and K^+K^- pairs (C = \pm 1) in continuum
 - \rightarrow charge asymmetry relative to polar angle of π^+ in dipion rest frame
 - → fractional energy asymmetry in open charm diffractive photoproduction

asymmetries in HERA kinematics estimated 10% - 15 %

χ_c production

Diffractive Higgs production has small cross section with large uncertainties (gap survival factor, Sudakov factor) Same formalism can be used to predict $\gamma\gamma$, dijet and χ_c,χ_b

 \rightarrow see talk by A. Martin

→check uncertainties by measuring systems with larger cross section (smaller mass)

χ_c rates

• Khoze, Martin, Ryskin, Stirling 2004:

$$\chi_c$$
 at LHC $\sqrt{s} = 14$ TeV: $\frac{d\sigma_{excl}}{dy} \Big|_{y=0} = 340 \text{ nb} \rightarrow 3.5 \ 10^6 \ \chi_c$ in $10^6 \ s$

decay mode	BR	signal	backgnd
$\chi_{\rm c} \to p\bar{\rm p}$	2x10 ⁻⁴	700	??
$\chi_{\rm c} \to \pi\pi$	$7x10^{-3}$	2.4×10^4	??
$\chi_{\rm c} \rightarrow { m K^+K^-}$	6x10 ⁻³	2.1×10^4	??
$\chi_c \rightarrow J/\psi \gamma$	1x10 ⁻²	3.5×10^4	??

 $\begin{cases} \chi_c & measurement \\ seems & feasible \end{cases}$

feasibility study $\chi_c \rightarrow J/\psi \gamma$, BR $J/\psi \rightarrow e+e-$, acceptance γ , reconstruction eff, signal ~35

Exclusive vector meson production in PbPb

- γ-pomeron interaction in PbPb
- Calculate equivalent photon flux n(ω)

$$\sigma(A+A \to A+A+V) = 2 \int n(\omega) \sigma_{\gamma A \to VA}(\omega) d\omega$$

For heavy states J/ψ , Y, the cross section $\sigma_{\gamma A \to VA}$ is given by

$$\frac{d\sigma}{dt}\Big|_{t=0} = \frac{\alpha_s^2 \Gamma_{ee}}{3\alpha M_V^5} 16\pi^3 [xg(x, \frac{M_V^2}{4})]^2$$

 \rightarrow This cross section probes the nuclear gluon distribution $g(x,Q^2)$

Exclusive vector meson cross sections

Many calculations use different approaches, including gluon shadowing, a full Glauber model for the absorption, the color dipole model etc.

[KN] S. Klein and J. Nystrand, Phys. Rev. C 60 (1999) 014903.

[GM] V. P. Goncalves and M. V. T. Machado, J. Phys. G 32 (2006) 295.

[IKS] Yu. P. Ivanov, B. Z. Kopeliovich and I. Schmidt, arXiv:0706.1532 [hep-ph].

[FSZ] M. Strikman, M. Tverskoy and M. Zhalov, Phys. Lett. B 626 (2005) 72;

L. Frankfurt, M. Strikman, M. Zhalov, Phys. Lett. B 540 (2002) 220; Phys. Lett. B 537 (2002) 51.

 $Pb+Pb \rightarrow Pb+Pb+V$ at the LHC

Model	ρ ⁰ [b]	J/Ψ [mb]
KN GM IKS FSZ	5.2 10.1 4.0, 4.4 9.5	32 41.5 26.7, 26.3 14, 85

Conclusions, outlook

- ALICE has unique opportunity to do diffractive physics
- Diffractive trigger defined by two rapidity gaps
- Neutron tagging at zero degree
- Phenomenology of Pomeron/Odderon
- Measurement of exclusive χ_c feasible
- Photon-Photon physics