

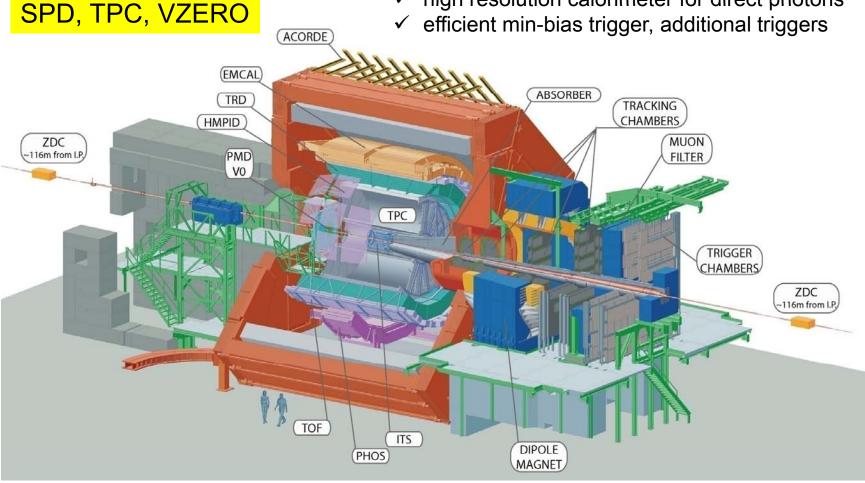
Physics at LHC-2008

29 September - 4 October 2008, Split - CROATIA

First Physics with ALICE: from pp to PbPb

Domenico Elia, INFN Bari for the ALICE Collaboration

Introduction


- ☐ First proton-proton run (starting spring 2009):
 - commissioning ALICE with beams
 - unique pp physics programme with ALICE
 - important pp reference data for heavy ions
- Early heavy-ion run (2009/2010):
 - running 10⁶ sec @ 1/20 nominal luminosity
 - first basic issues:
 - global event characteristics
 - bulk properties (thermodynamics, hydrodynamics ...)
 - (start of) hard probe measurements

ALICE layout

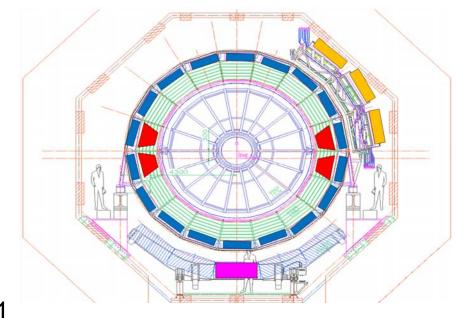
First pp physics:

- low-momentum cutoff (<100 MeV/c) x_T -regime (down to 4×10^{-6})
- √ p_t-reach up to 100 GeV/c
- excellent tracking and PID
- dedicated di-electrons and di-muons
- high resolution calorimeter for direct photons
- efficient min-bias trigger, additional triggers

Proton-proton physics with ALICE

☐ The ALICE first physics:

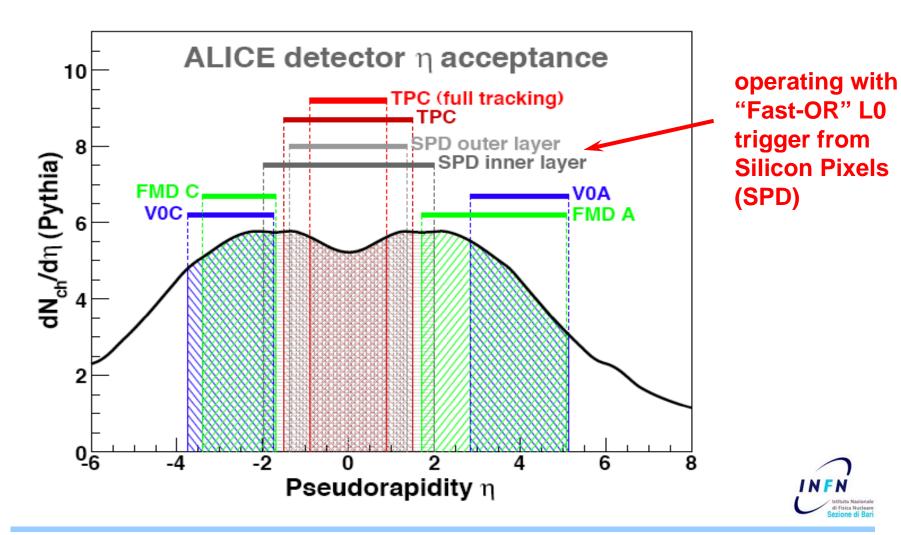
Talk by JF Grosse-Oetringhaus


- allowing unique pp physics in ALICE eg:
 - charged multiplicity, pseudorapidity density distributions
 - transverse momentum spectra
 - first strange particle studies
 - charm cross section → major input to pp QCD physics
- providing reference data for heavy ion collisions
- Early pp running scenario:
 - > some collisions @ 900 GeV → minimize existing systematics.
 - pp nominal run @ 10 TeV (14 TeV):
 - luminosity of 2*10³⁰ cm⁻² s⁻¹ x 10⁷ s, 2*10¹² collisions
 - MB triggers: 20 events pileup (TPC), 109 collisions

Detector startup configuration

- Complete (fully installed and commissioned):
 - ➤ ITS, TPC, TOF, HMPID, MUON, PMD, V0, T0, FMD, ZDC, ACORDE
- Partially completed:
 - > TRD (25%) → 2009
 - > PHOS (60%) → 2010
 - ➤ HLT (40%) → 2009
 - \rightarrow EMCAL (0%) \rightarrow 2010/11

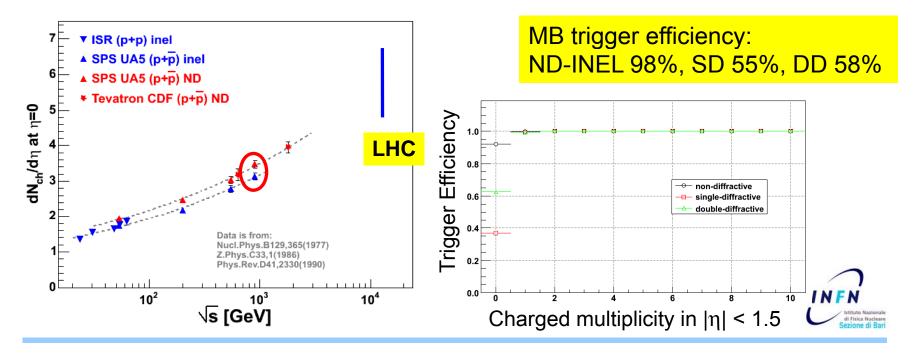
- → full hadron and muon capabilities @ startup
- → partial electron and photon capabilities



S Chapeland

Talks by: J Shukraft

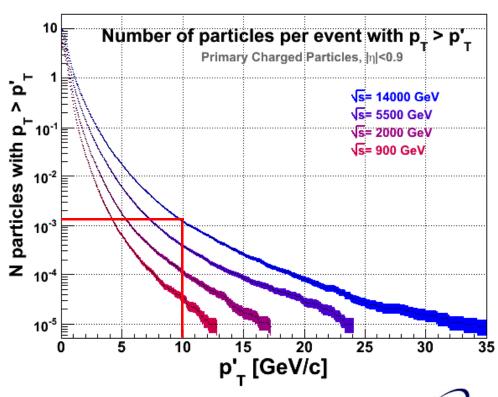
Charged particle acceptance



Charged particle multiplicity

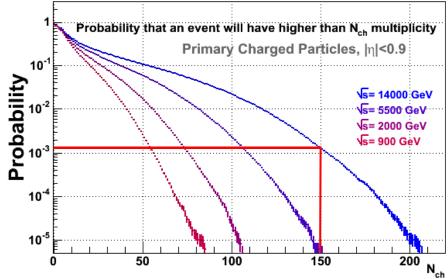
- Will be the first measurement:
 - unique SPD (L0) trigger (min-bias precision measurements)
 - compare with existing measurements (900 GeV)
 - extend existing energy dependence

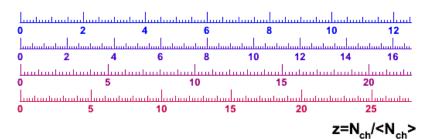
Initially based on the SPD


Initial transverse momentum reach

- With 20k MB pp events (first few days):
 - > 5 GeV (at 0.9 TeV)
 - > 10 GeV (at 14 TeV)

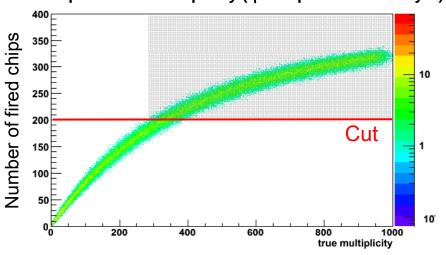
p_T reach up to ~20 GeV already with 200k events


- With O(10⁸) events (first month):
 - > 15 GeV (at 0.9 TeV)
 - > 50 GeV (at 14 TeV)

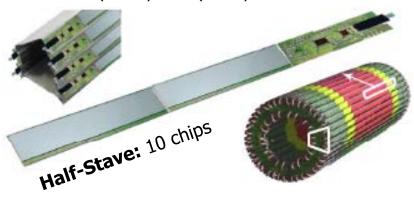


Initial multiplicity reach

- With 20k MB pp events:
 - up to multiplicities
 - 8 times the average (30 events beyond)
- High multiplicity trigg:
 - to enrich high multiplicity
 - interesting for multiparton interaction, event structure, multiplicity correlations, HBT, rapidity gaps, ...
 - ➤ @ 10 times the average
 multiplicity → energy density as with heavy ions



High multiplicity trigger



- Based on the SPD Fast-OR:
 - OR signal from each chip:
 - 400 chips inner layer
 - 800 chips outer layer
 - trigger (L0) on fired chip multiplicity per layer

Fired chips vs. true multiplicity (η acceptance of the layer)

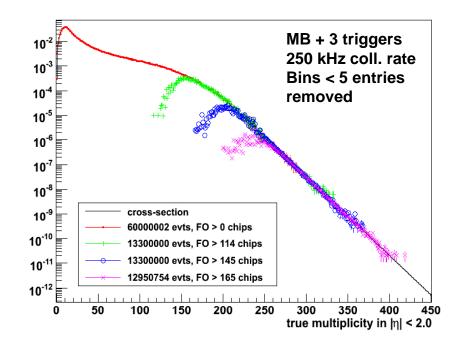
Sector: 4 (outer) + 2 (inner) staves

SPD: 10 sectors (1200 chips)

Few trigger thresholds configured simultaneously:

- tuned with different downscaling factors
- maximum threshold determined by
 - event rate
 - background
 - double interactions

High multiplicity trigger

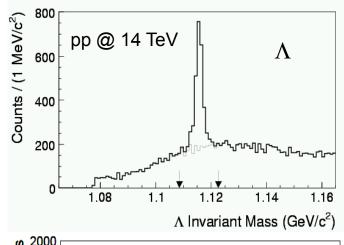


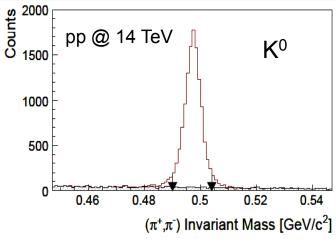
- Example of threshold tuning:
 - MB and 3 high multiplicity triggers

250kHz collision rate 100 Hz recording rate

MB trigg \rightarrow 60% 3 HM triggs \rightarrow 40%

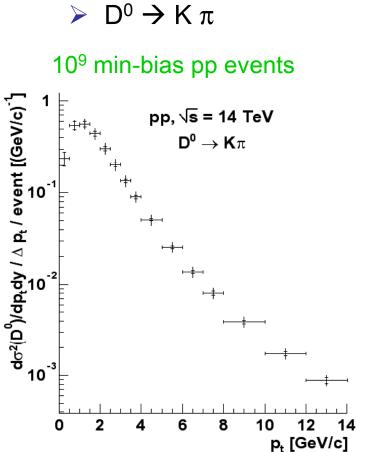
Trigg. Rate (Hz)	Scaling	Raw rate (Hz)	Threshold (layer 1)
60.0	4167	250000	MB
13.3	259	3453.3	114
13.3	16	213.3	145
13.3	1	13.3	165

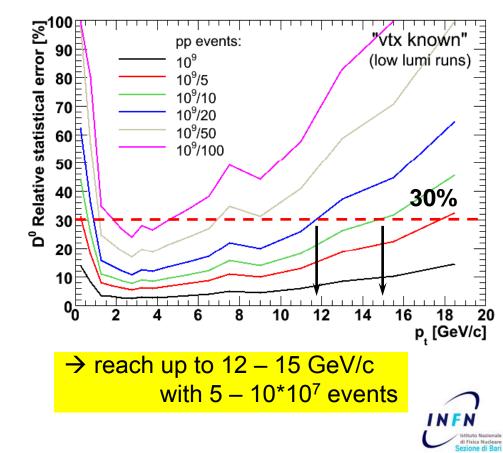



First strange particle studies

- Significant samples of strange particles:
 - > ~70 M min-bias pp events (based on Pythia for LHC):
 - K0 \rightarrow 7*10⁶
 - $\Lambda \rightarrow 10^6$
 - \blacksquare Ξ \rightarrow 2*10⁴
 - $\Omega \rightarrow 270$
 - detailed study of flavour composition

	K ⁰	Λ	[1]	Ω	р	p
Yield	0.1	0.01	2x10 ⁻	10 ⁻⁵	0.4	0.4
Stat	10 ⁴	10 ⁴	10 ⁴	10 ⁴	10 ⁴	10 ⁴
pp Evts	10 ⁵	10 ⁶	10 ⁸	10 ⁹	10 ⁴	10 ⁴





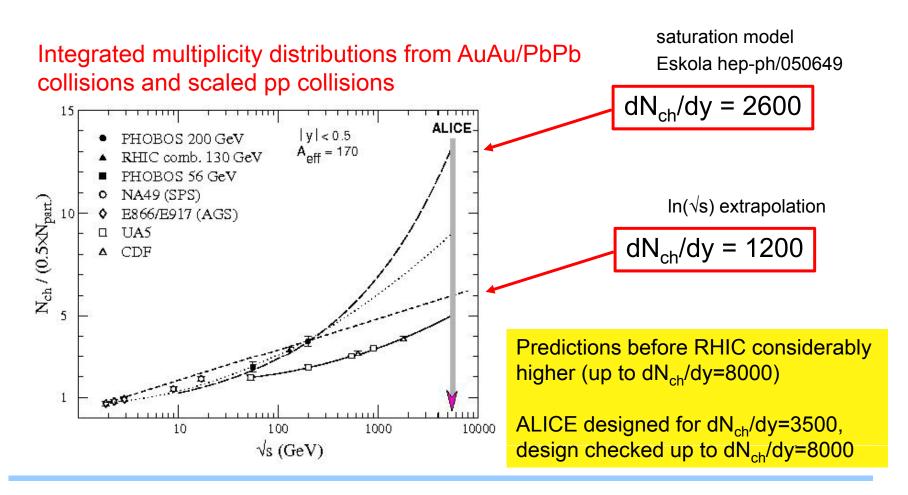
Heavy flavour (charm) physics

Golden channel for open charm:

Heavy-ion physics with ALICE

- Physics goals, what and when:
 - fully commissioned detector and trigger:
 - alignment and calibrations available from pp run
 - First 10⁵ events → global event properties:
 - multiplicity, rapidity density, elliptic flow
 - First 10⁶ events → source characteristics:
 - particle spectra, resonances
 - differential flow analysis
 - interferometry
 - \rightarrow first 10⁷ events \rightarrow high p_T, heavy flavour:
 - jet quenching, heavy-flavour energy loss
 - charmonium production
 - → yield bulk properties of created medium (energy density, temperature, pressure, viscosity, opacity ...)

Heavy-ion physics with ALICE


- Early ion running scenario:
 - running @1/20 of the nominal luminosity
 - luminosity of 5*10²⁵ cm⁻² s⁻¹ x 10⁶ s:
 - 0.05 nb⁻¹ for PbPb @ 5.5 A TeV
 - 2*10⁸ collisions
 - minimum bias rate → 400 Hz
 - central collision (5%) rate → 20 Hz
 - muon triggers:
 - ~100% efficiency, < 1 kHz
 - centrality triggers:
 - bandwidth limited
 - N_{PbPb} (minimum bias) $\rightarrow 10^7$ events (10 Hz)
 - N_{PbPb} (central collisions) $\rightarrow 10^7$ events (10 Hz)

Charged particle multiplicity density

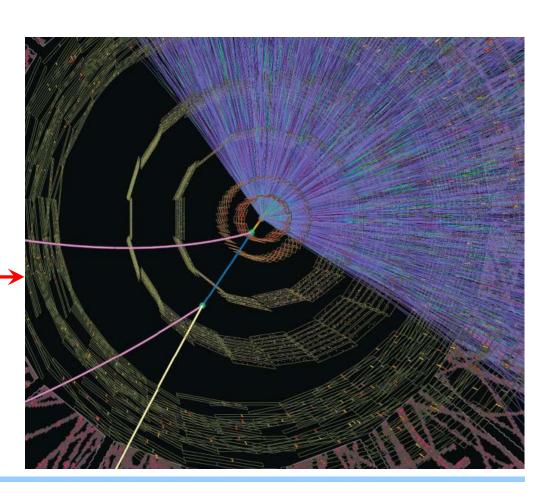
☐ Getting a first estimate of the energy density:

Elliptical flow

Getting one of the first answers from LHC: experimental trend: large increase is the QGP an ideal fluid ? of flow Eccentricity vs. particle multiplicity LHC? in overlap region hydro limit reached **HYDRO** limits at RHIC **RHIC** → ideal fluid AGS SPS 0.2 0.15 0.1 0.05 10 15 20 25 30 event plane resolution < 10° $(1/S) dN_{ch}/dy$ robust signal → no PID needed

Tracking challenge

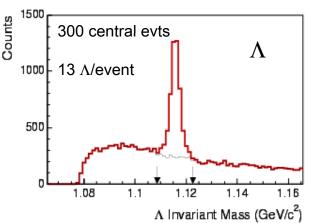
■ Excellent tracking/vertexing/PID capabilities:

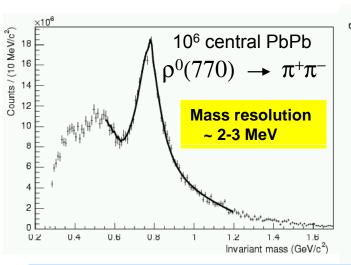

key factors

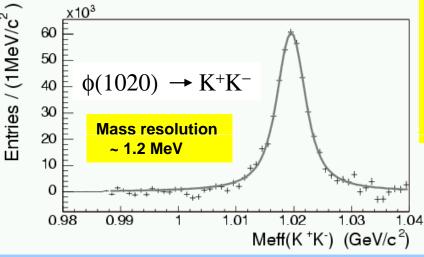
ALICE combines all of them!

 $\Xi^- \longrightarrow \Lambda \pi^-$

with part of the event removed


→ displaced vertices can be seen


Strange particles, resonances



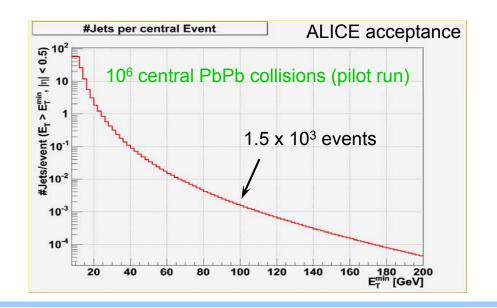
- Measure (ρ , ϕ , K*, K⁰, Λ , Ξ, Ω ...):
 - strangeness production
 - medium modifications of mass, widhts
 - \triangleright p_T reach (with 10⁷ events):
 - ~13-15 GeV (φ,K,Λ)
 - ~9-12 GeV (ρ,Ξ,Ω)

hadrochemical analysis, chemical/kinetic freeze-out

Reconstruction rates:

Λ: 13/eventΞ: 0.1/eventΩ: 0.01/event

Jet statistics in pilot Pb run


Jets copiously produced:

p_T (GeV)

2 20 100 200

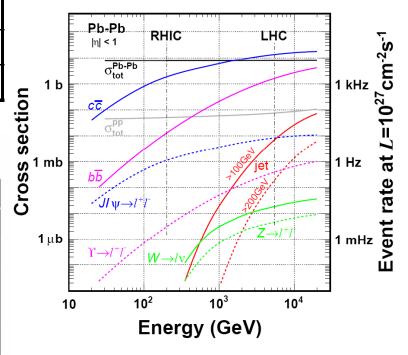
100/event 1/event 10³ in first 10⁶ PbPb events

- ev-by-ev distinguished objects
- huge background (underlying event)

10⁶ central PbPb collisions

E _T threshold	N _{jets}
50 GeV	5 x 10 ⁴
100 GeV	1.5 x 10 ³
150 GeV	300
200 GeV	50

Heavy quarks and quarkonia

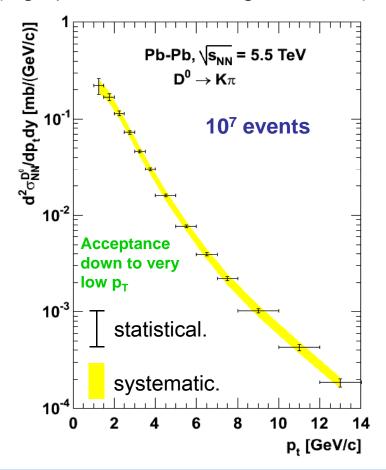


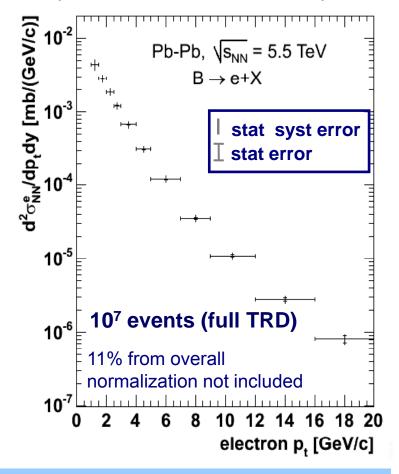
☐ LHC is a heavy flavour machine:

	SPS	RHIC	LHC
N _{cc} /event	0.2	10	200
N _{bb} /event	-	0.05	6

ALICE's Heavy Quark Shopping List

probe	channel	acceptance
$J/\psi, \psi', \Upsilon, \Upsilon', \Upsilon''$	$\mathrm{e^{+}e^{-}}$	$ \eta < 0.9$
$J/\psi, \psi', \Upsilon, \Upsilon', \Upsilon''$	$\mu^+\mu^-$	$2.5 < \eta < 4$
$c\bar{c}\ \&\ b\bar{b}$	$\mathrm{e^{+}e^{-}}$	$ \eta < 0.9$
cē & bb	$\mu^+\mu^-$	$2.5 < \eta < 4$
D mesons	π ,K	$ \eta < 0.9$
B mesons	$\mathrm{B} ightarrow J/\psi ightarrow \mathrm{e^+e^-}$	$ \eta < 0.9$
D & B mesons	single e^\pm	$ \eta < 0.9$
cē & bb	$\mathrm{e}^{\pm}\mu^{\mp}$	1 < y < 3


Talk by P Pillot


Open charm and beauty

Open charm in $D^0 \rightarrow K \pi$ channel (high precision vertexing ITS+TPC)

Open beauty in the semielec. channel (electron ID in TPC+TRD)

Summary

- ☐ First proton-proton run:
 - collect important pp reference data for heavy ions
 - study unique pp physics with ALICE:
 - minimum bias running
 - fragmentation studies
 - heavy-flavour cross sections
- Early heavy-ion run:
 - establish global event characteristics
 - measure important bulk properties

Outlook

- ☐ First long heavy-ion run:
 - quarkonia measurements
 - jet-suppression studies
 - flavour dependence studies
- ☐ High luminosity heavy-ion run (1 nb⁻¹):
 - dedicated high p_T electron triggers
 - jets > 100 GeV (EMCAL)
 - \triangleright Y states, γ -jets correlations, ...
- pA & light ion running

