

Jet Quenching in Heavy-Ion Collisions with CMS

Yen-Jie Lee (MIT) for the CMS Collaboration

l lii

Jet quenching: RHIC vs LHC

- Use the photon to tag parton energy
 - Goal: Best correlation of parton and photon energy
 - Ideal: Use the leading order photons
 - In Practice: Use the isolated photons to select events with good correlation of parton and photon energy

Photon-tagged jet fragmentation functions

4

Event generation

Study two scenarios

- No Quenching: PYTHIA signal and QCD background (p+p) events mixed with central unquenched Pb+Pb HYDJET events
 - No high- p_{T} particle suppression
 - Leads to high background rates
- Quenching: PYQUEN signal and QCD background (p+p) events mixed with central quenched Pb+Pb HYDJET events
 - Suppression of high- p_{T} particles
 - Energy loss radiated out of jet cone
 - Challenging for jet finder

Signal and background statistics

- Study for one nominal LHC Pb+Pb run "year"
 - 10⁶ sec, 0.5nb⁻¹, 3.9 x 10⁹ events
- Use 0-10% most central Pb+Pb

 $- dN/d\eta|_{n=0} \sim 2400$

- Simulate signal and background QCD (p+p) events
 - Mix into simulated Pb+Pb events (~1000 events)

Data set	$p_{\rm T}$ [GeV/c]	signal γ-jet	π^0	π^{\pm}	η	η'	ω
unquenched	>70	4288	23675	47421	12267	8194	30601
unquenched	>100	1216	4422	9103	2357	1567	5975
quenched	>70	4209	7569	14616	3825	2445	9235
quenched	>100	1212	1562	3000	829	515	2051

Reconstruction

- Tracking
 - Low p_T cutoff at 1GeV/c
 - Efficiency (algorithmic + geometric) ~ 50-60%
 - Fake rate ~ few %
- Jet axis finding
 - Iterative cone algorithm with underlying event subtraction (R=0.5)
 - Performance studies on away-side jet finding (see later)
- Photon ID
 - Reconstruction of high- E_{T} isolated photons
 - New for this analysis (see next slides)

Tracking: NIM A566 (2006) 123

ECAL response in p+p and Pb+Pb

10*

- Identification
 - 10 cluster shape variables
 - based on ECAL
 - 10 isolation variables
 - based on ECAL/HCAL
 - Track-based cut
- Selection
 - Total of 21 variables grouped into 3 sets (photon ID, Calo Isolation, track isolation)
 - Linear discriminant analysis (Fisher) and cut optimization using TMVA

Physics at LHC Split'08

- Set working point to 60% signal efficiency
- Leads to 96.5% background rejection
- Training is done on unquenched samples only

Photon identification performance

E_τ^γ >70GeV

Photon isolation and shape cuts improve S/B by factor ~15

Jet finding (away-side)

Quenched Pb+Pb

Δφ

- The energy cut reduces the false rate to 10% level
 - <u>Analysis does not use jet energy otherwise</u>
- Jet finding efficiency rises sharply between 30-100 GeV MC jet E_{T}
 - Main source of systematic uncertainty in reconstructed FFs

Fragmentation Functions

- Obtain dN/dξ using tracks in R=0.5 cone around jet axis
- For ξ>3 (~p_T<4GeV/c) dN/dξ dominated by underlying Pb+Pb event
 - Estimate background using R=0.5 cone rotated in φ by 90° relative to jet
 - Sum event-by-event backgrounds and subtract

Reconstructed fragmentation functions

- Photon selection and background contamination (15%)
- Track finding efficiency correction (10%)
- Wrong/fake jet matches (10%)
- Jet finder bias (10-30%, largest contribution in quenched case, see next slide)

No or small ξ

dependence

Jet finder bias

MC truth for all jets

- Jet finder bias leads to about 30% in quenched case (10% for unquenched case)
- It has two contributions
 - 1)FFs and jet finding efficiency depend on parton E_{T}
 - Can be corrected with known turn-on curve (not done here) <u>MC truth for found reco jets</u>
 - - The jet finder is more likely to find a jet with few high p_T particles than jets with many soft particles
 - MC based correction might be possible (not done here)
- MC studies suggest that
 2) dominates

Fragmentation function ratio

Reconstructed quenched Pb+Pb / MC unquenched p+p **CMS** Preliminary **CMS** Preliminary Fragmentation Function Ratio Fragmentation Function Ratio Quenched / Unquenched Quenched / Unquenched 6 6 $E_{T}^{\gamma} > 70 GeV$ $E_{\tau}^{\gamma} > 100 GeV$ Reconstructed Pb+Pb / MC p+p Reconstructed Pb+Pb / MC p+p 5 5 MC truth p+p MC truth p+p 3 2 E_^γ >70GeV >100GeV 0 0 8 2 3 9 10 10 8 9 $\xi = \ln(\tilde{E}_{/p})$ $\xi = ln(E_{\perp}/p_{\perp})$

- Medium modification of fragmentation functions can be measured
 - High significance for 0.2 < ξ < 5 for both, $E_T^{\gamma} > 70 \text{GeV}$ and $E_T^{\gamma} > 100 \text{GeV}$

Summary

- Complete study of in-medium fragmentation functions using photon-tagged jet events
 - Two scenarios: Unquenched and quenched cases
 - Pythia and Pyquen (+ Hydjet)
- Key features of the study
 - Full statistics expected for nominal one-year CMS Pb+Pb run at LHC
 - Full detector simulations of signal and background
 - Complete reconstruction chain
 - Track finding
 - Jet finding
 - Photon isolation
 - Underlying event subtraction
 - Analysis of systematic errors
 - Uncertainty dominated by jet finder bias
- Measurement of expected strong medium modification of fragmentation functions can be done reliably in central Pb+Pb

Backup Slides

Photon-tagged jet fragmentation functions

