ATLAS and CMS Detector Upgrades for sLHC

Nigel Hessey

Physics Goals
Machine Conditions
Detector Changes

LHC and sLHC

- LHC is foremost a discovery machine
 - In ~2 years will take enough data (10 fb⁻¹) to discover SM Higgs or rule it out
 - ◆ After ~8 years will have ~700 fb⁻¹, enough to discover SUSY to ~1 TeV, W'/Z' to ~5 TeV, many other possibilities
- But just what has been found?
 - Needs much more data
 - Measurement of many parameters
 - Deviation from SM values ==> New physics; needs high precision
 - SUSY spectroscopy
- More data will also extend the discovery range to higher masses and rare processes
 - References:
 - ◆ Michelangelo Mangano at SLHC Kick-of:
 - ◆ F. Gianotti et al, Eur.Phys.J.C39:293-33.

Higgs found? Measure e.g. Triple Gauge Couplings

- SM fixes couplings; most general forms have
 5 extra parameters possible.
 - ◆ sLHC can significantly reduce error bars on most.
- Higgs self-coupling also much better measured at sLHC

Coupling	100 fb-1	1000 fb-1
λγ	0.0014	0.0006
λz	0.0028	0.0018
$\Delta \kappa \gamma$	0.0340	0.0200
δκΖ	0.0400	0.0340

SUSY

How many Higgs? sLHC boosts the region in which more than one can be observed. E.g. MSSM model:

SUSY particles

- Either already found at LHC, and sparticle spectroscopy at sLHC
- ◆ Or extend mass range for discovery ~40 % at sLHC

No Higgs?

- ◆ Then strong vector boson scattering needed ~1 TeV
- ◆ Low statistics at LHC (few events); clear signal at sLHC even for 1.5 TeV WZ or ZZ resonance

New Forces; W' and Z'

- Increased mass reach from higher statistics and tails of PDF
- ◆ 5 TeV reach at LHC --> 6 TeV at sLHC

Dilepton invariant mass spectrum

- If found, what force?
- Peak shape and asymmetries (Dittmar et al) with high statistics can distinguish between models

Physics Requirements for Detectors at sLHC

- Detector performance needs to be maintained despite the pile-up!
 - High-mass (~TeV) can tolerate some degradation; low back grounds
 - But WW scattering (Higgs couplings or vector boson fusion) needs forward jet reconstruction and central jet veto
 - Vertex, missing Et, pt resolution remain important, and efficiencies, for many channels of interest
 - Electron ID and muons for W/Z, W'/Z', and SUSY

Nigel Hessey

7

LHC Anticipated Peak and Integrated Luminosity

- ◆ Phase 1 starts with 6 8 month shutdown end 2012
 - ◆ Peak luminosity 3 x 10³⁴ cm⁻² s⁻¹ at end of phase 1
- ◆ Phase 2 will start with an 18 month shutdown for detector changes at end of 2016
 - ◆ Peak 10 x 10³⁴ cm⁻² s⁻¹ in phase 2
- 3000 fb⁻¹ data each detector in phase 2

Nigel Hessey

8

Schedule

- Machine evolution may differ from the given best estimate
 - More risk to downside
 - But also possibility things can go faster
 - ◆ ATLAS and CMS Inner trackers will need replacing 2016 or soon after and these are very long timescale projects
 - Work has started, and needed to
 - Detector developers, engineers etc. are available
 - Simulation experts less so, a challenge

- Aim to pursue detector development with end 2016 as target
 - ◆ If more time becomes available, of course we should benefit using more advances in detector technology
- Need experience of running detectors and seeing detector performance
- Need physics results
- ◆ Aim for Technical Proposals (with options) for detector upgrades in 2010 and tracker TDRs 2011 – or difficult to meet 2016

Detector Plans – Phase 1

- ◆ Limited time for installation 6 to 8 months in 2012/13 shutdown
- ◆ Small increase in peak rate above previous estimates (2 --> 3 x 10³⁴)
- ◆ Total integrated luminosity similar to previous expectations ~700 fb⁻¹
 - ◆ Limited changes needed; some completion of staged items e.g. CMS muons
- Main changes are in pixels, where B-layers reach radiation limit and high rates cause lost hits
 - CMS hope to replace the whole pixel detector; at least the B-layer
 - ◆ ATLAS pixel takes ~ 1 year to replace B-layer

Nigel Hessey

Instead ATLAS will insert a new B-layer inside the current detector, along with a new smaller diameter beam pipe, in 2012/13 shutdown

◆ TDAQ

- Both experiments will continuously upgrade TDAQ to cope with rates and take advantage of new processing power
- Both will look at topological triggers combining different trigger elements, e.g. muon with no jet
- ◆ Other ideas e.g. fast track finding (associative memory) at LVL2

Phase 1 changes - Pixels

- CMS investigate options from b-layer only to 4 layers instead of 3, 130 nm readout chips with DC-DC converters (twice as many modules as now)
- Can insert and connect in few days

- Atlas can maintain or improve vertexing inserting new B-layer:
 - ◆ Smaller b-layer radius 50 --> 37 mm; smaller pixels (400 --> 250 micron long) beats extra material

SiPM for CMS Tile Calorimeter

- Currently tower all added together no possibility to allow for darkening of front layers
- Dynamic range of hybrid photo multipliers insufficient for muons and noise issues
- Replace with SiPM (avalanche photo diodes)
 - No noise
 - ◆ Big dynamic range
 - Keep fibres, can retrofit fast
 - More possibilities for segmentation

What are the conditions at Phase II/sLHC?

- → 300 400 pile-up events at start of spill (unless luminosity levelling)
- ◆ Want to survive at least 3000 fb⁻¹ data taking
- ◆ B-layer at 37 mm:
 - → ~30 tracks per cm⁻² per bunch crossing
 - ◆ Few 10s of MGray
 - → >10¹⁶ 1 MeV n-equivalent nonionising

Nigel Hessey

LHC-Physics 2008, Split, Croatia

Detector Changes for Phase 2

- Most of ATLAS and CMS will cope well at sLHC
 - Keep magnet systems, most parts of muon systems and calorimeters
 - ◆ But inner trackers in both experiments need complete replacement
 - Radiation damage limit will have been reached
 - Need to replace them even if no sLHC!

- Higher rates cause dead time (e.g. ATLAS TRT)
- Need finer granularity detectors for good pattern recognition
- And parts (especially electronics) of all systems need upgrading, even if most of the basic detector parts remain

Inner detectors - B-layers

- Most challenging for track density, radiation damage, SEU
- Highest requirements: efficiency, coverage, position resolution
- Sensors: current planar-Si sensor technology is not radhard enough to survive to end of sLHC. Either new sensors, or replace every few years
 - 3D silicon, thin silicon, diamond, MPGD (Gossip) as alternatives
- Smaller beampipes --> b-layer closer to beam

4 Oct 2008 Nigel Hessey

Pixel Detectors

- Read-out architecture and frontend chips under development
 - ◆ 130 nm; low power; minimum pixel length; high data rates
- High power levels -> look at new cooling, including CO2
- Lighter mass supports and services?
- Cheaper production more pixels?

New Strips Detectors

- Switch to n-in-p sensors
 - At high dose, may not achieve full depletion
 - ◆ Still have readout junction in the depleted region, no big signal loss
 - Prototype sensors reach 1000 V after irradiation -> good charge collection efficiency
- Short strips (~25 mm) at inner region for lower occupancy or strixels
- Mechanics and assembly
 - → low radiation length
 - Rapid installation: insert complete ID's (new for ATLAS)
- Powering: Serial or DC-DC *must*
- High speed, low power, low mass data transfer

4 Oct 2008 Nigel Hessey

Electromagnetic Calorimeters

- Most regions of both experiments perform very well at sLHC
 - Optimise signal processing for higher pile-up
- Some CMS crystals and VPT may darken as function of integrated luminosity, starting from high eta regions inwards
 - Difficult to access
 - ATLAS forward calorimeter may suffer a number of problems:
 - → Boiling of LAr, ion build up between electrodes, voltage drop over HV resistor
 - Studies underway; If these show action is needed, two solutions considered:
 - Warm calorimeter in front of current calorimeter

Nigel Hessey

 Open cryostat, insert complete new FCAL with smaller gaps and more cooling

Hadronic Calorimeters

- Atlas tiles, fibres, PM: expected to survive
 - ◆ Small decrease in performance after 7 years LHC running
 - ◆ Even at the end of sLHC running they will be working fine - though worst regions may have significantly less light
 - ◆ So do not expect major detector parts to be changed
- ATLAS Readout Electronics: rad hardness, maintainance, trigger needs - all benefit from new readout
- Power supplies rad hardness and repairability issues so replacement plans

Hadronic Calorimeters - CMS

 Most of hadron cal is fine especially with SiPM

 Forward region suffers: few towers blacked by (tower 1 ~ 4 % of light output; tower 2 ~23%)

Also, machine magnets

("D0") block forward

calorimetry

Muon Systems

- CMS has a lot of shielding, rate probably OK for current chambers
 - ♦ Need to see backgrounds to confirm; possibly $\eta > 2$ need changing, or limit trigger region to below this
 - ◆ New readout electronics? FPGA not rad hard enough
- ATLAS air core toroids have higher backgrounds; need to replace forward chambers (CSCs mainly) at nominal background.
 - ◆ Very important to measure actual background to see how much of "safety factor 5" is used up to see if significantly more needs replacing
- Both experiments are looking into improved shielding
 - Difficult : current design is highly optimised
 - ◆ Other possibility is to develop single chambers to do both triggering and precision read-out: thinner chambers leave more space for shielding
 - ◆ TGC's or Micromegas for ATLAS

ATLAS Muon Chamber Replacement Range

- Depending on backgrounds, either minimal or very large fraction of Atlas muon system needs replacing, unless backgrounds can be reduced (in relation to luminosity)
- Both Atlas and CMS have to wait for data

Occupancy <30% Occupancy >30% At least half of the chambers in the inner end-cap disk would have to be replaced by chambers with higher high rate capability.

Limitations – occupancies of the chambers

Almost all chamber would have to be replaced.

Beam-pipe and shielding

A beryllium beampipe

A beryllium beampipe is also the only way of significantly reducing the background in the muon spectrometer.

- All-Be beam pipe reduces muon BG considerably
 - ◆ Expensive beampipe, but **much** cheaper than new muon chambers
- CMS consider more shielding to $\eta = 2$

Nigel Hessey

◆ Add borated polythene; better shielding of PMTs

Triggers

In both experiments the goal is to maintain trigger rates.

- ◆ Still challenging! You have to reject 10 times more events at LVL1, and process much more data at LVL2 (pile-up --> bigger events)
- Continuous process of replacing and increasing processor hardware
- Consider increasing level-1 latency: the time available to actually run the trigger increases rapidly as LVL1 latency increases

Track triggers at Level-1

- Muon trigger rate ~constant above ~20-30 GeV/C; both ATLAS and CMS
- Cannot improve muon situation at CMS; difficult at ATLAS (new muon trigger chamber layer with higher resolution?)
- Several ideas CMS and ATLAS to investigate inner tracker triggers
 - both P_t and vertex displacement triggers

CMS muon trigger rate

High momentum tracks are straighter so pixels line up

Pairs of stacked layers can give a P_T measurement

LHC-Physics 2008, Split, Croatia

Summary

- ◆ There is every hope there will be a rich field of physics to explore at the LHC into the 20's
 - ◆ Need LHC results
- The LHC expects
 - ◆ Phase-1 upgrade 2012 leading to 3 x 10³⁴ cm⁻² s⁻¹ peak luminosity
 - ◆ Phase-2 upgrade starts end 2016 leading to 10 x 10³⁴ cm⁻² s⁻¹ peak luminosity
- Atlas and CMS require major upgrades (even without Phase-2) installed in long shutdown 2017
- R&D underway to meet the challenges
 - Need experience with current detectors

Nigel Hessey

This project has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under the Grant Agreement n°212114

backup slides

If Higgs Found

- Measure (ratios of) BR to less common states
- Deviations from SM → new physics
- Some are systematics-limited already at LHC, but significant improvement in others

Other track trigger ideas...

4 Oct 2008 Nigel Hessey LHC-Physics 2008, Split, Croatia 29

ID Layouts: More granularity

CMS

 More layers; reduction under investigation

