VBF SM Higgs boson searches with ATLAS

Stefania Xella (Niels Bohr Institute, Copenhagen) on behalf of the ATLAS collaboration

Physics at the LHC - 2008 Split, Croatia September 29, 2008

VBF SM Higgs boson searches with ATLAS Stefania Xella (NBI)

29/09/2008

Following results on SM Higgs discovery reach in VBF channel obtained with :

- > full GEANT4 simulation with realistic detector geometry and misalignment / distortion effects , large statistics (Computing System Commissioning)
- > Detailed trigger simulation (including lvl1 firmware trigger)
- > most recent reconstruction and identification methods
- > LO/NLO ME generators (Alpgen, Sherpa, MC @ NLO) matched to PS generators (Herwig) for backgrounds
- > All tau decay final states combinations considered

VBF SM Higgs boson production

focus on $\tau\tau$ final state here First time all τ decay modes considered ! Cross section x Br = 0.4 - 0.5 pb

Characteristics of signal :

- + Central tau decay products
- + high $\textbf{p}_{\textbf{T}}$ forward quark initiated jets, separated in η
- + other jets between the two quark initiated jets suppressed (no colour flow between two quark jets)
- + missing energy in the transverse plane (due to taus)

VBF SM Higgs boson searches with ATLAS

Stefania Xella (NBI)

Main backgrounds

Z+jets : 2 taus and q jets as in signal Handle : different kinematic tt : 2 taus as in signal, but no q,g jets Handle : different kinematic and jet flavour

Analysis Strategy

Backgrounds are large. Need to achieve rejection factor > 10⁵ (Z,W,... > 10¹¹ (QCD)

Example: Against QCD

II (both taus decay leptonically): (10³ (e/mu)) 2 x 10² (VBF jets) x 10³ (missing E_T)°

Ih (one tau decays leptonically):

10³ (e/mu) x 10² (VBF jets) x 10² (tau jet) x 10^3 (missing E_T) x high p_T tau jet

hh (both taus decay hadronically):

10² (VBF jets) x (10² (tau jet))² x 10³ (missing E_T) x (high p_T tau jet)²

VBF SM Higgs boson searches with ATLAS Stefania Xella (NBI)

29/09/2008

Tau lepton decays & identification

Tau identification= $35 \% \begin{array}{c} \tau \rightarrow v_{\tau} + v_{e} + e \\ \tau \rightarrow v_{\tau} + v_{\mu} + \mu \end{array} \begin{array}{c} (17.4\%) \\ (17.8\%) \end{array} \begin{array}{c} \text{Electron/muon identification} \\ (\epsilon = 80/90\%, rejection q(g) jet ~ 0.1\%) \end{array}$

Hadronic decay mode

VBF SM Higgs boson searches with $\epsilon = 50\%$, rejection q(g) ~ 1% Stefania Xella (NBI)

29/09/2008

Rapidity gap in VBF processes

Trigger and signal selection&yield

Trigger menu	Efficiency × Acceptance(%)
e22i	9.08 ± 0.03
mu20	9.88 ± 0.04
L1_TAU30_xE40_softHLT	3.67±0.02

Robust trigger strategy: electron, muon, or tau jet plus missing E_T . Soft identification used. Cope with higher rates by moving to tighter signatures or using combined trigger items (like e/mu+tau jet, tau jet+tau jet)

II channel, mH=120 GeV

Cross section (fb)	309.1
Trigger	57.2(1)
Trigger lepton	49.5(1)
Dilepton	5.46(3)
Missing $E_T \ge 40 \text{ GeV}$	3.17(3)
Collinear Approx.	2.15(2)
N jets ≥ 2	1.77(2)
Forward jet	1.34(2)
B-jet veto	1.16(2)
Jet kinematics	0.63(1)
Central jet veto	0.56(1)
Mass window	0.45(1)

Ih channel, mH=120 GeV

Cross section (fb)	309.1
Trigger	57.2(1)
Trigger lepton	49.5(1)
Dilepton veto	43.4(1)
Hadronic τ	8.02(7)
Missing $E_T \ge 30 \text{ GeV}$	4.96(5)
Collinear Approx.	3.34(5)
Transverse mass	2.46(4)
N jets ≥ 2	2.02(4)
Forward jet	1.52(3)
Jet kinematics	0.82(2)
Central jet veto	0.72(2)
Mass window	0.61(2)

hh channel, mH=120 GeV

Cross section (fb)	309.1
Trigger tau & MET	11.4(1)
2 Hadronic τs	1.83(4)
Missing $E_T \ge 40 \text{ GeV}$	1.43(3)
Collinear Approx.	1.03(3)
Di-tau Transverse mass	1.03(3)
N jets ≥ 2	0.86(3)
Total p_T	0.83(3)
Forward jet	0.72(2)
Jet kinematics	0.45(2)
Central jet veto	0.39(2)
Mass window	0.34(2)

VBF SM Higgs boson searches with ATLAS

Stefania Xella (NBI)

	$Z \rightarrow \tau^+ \tau^- + jets(\geq 1)$		tī		$Z \rightarrow l^+ l^- + n$ jets	$W \rightarrow l\nu + n$ jets	diboson
	QCD	ELWK	Full	Fast	$(n \ge 1)$	(n ≥ 1)	WW/ZZ/WZ
Cross section (fb)	168.4×10 ³	1693	833×	10 ³	768.6×10 ³	8649×10 ³	174.1×10^{3}
Trigger	51.5(1)×10 ³	230(1)	209.8(2))×10 ³	633.8(4)×10 ³	4411(9)×10 ³	32.0(1)×10 ³
Trigger lepton	42.7(1)×10 ³	190(1)	179.1(2))×10 ³	588.0(4)×10 ³	3815(9)×10 ³	28.0(1)×10 ³
Dilepton	4.25(5)×103	19.2(4)	21.7(1)	×10 ³	369.9(5)×10 ³	2.5(2)×10 ³	3.95(6)×10 ³
Missing $E_T \ge 40 \text{ GeV}$	744(18)	9.9(3)	16847	(99)	2683(67)	1148(176)	1744(49)
Collinear Approx.	454(14)	6.2(2)	1817(33)	Atlfast	104(12)	46(21)	73(9)
N jets ≥ 2	262(8)	5.8(2)	1722(32)	1699(4)	73(8)	14(6)	51(8)
Forward jet	39(2)	2.0(1)	294(13)	324(1)	10(3)	$\geq 1.2(2)^*$	8(3)
B-jet veto	30(2)	1.5(1)	89(7)	90.3(9)	9(3)	$\geq 1.0(2)^*$	5(2)
Jet kinematics	2.71(5)	0.57(5)	11.8(3)*	26.7(5)	0.66(3)*	0.19(4)*	0.33(5)*
Central jet veto	1.24(3)	0.43(4)	1.9(1)*	2.6(1)	0.27(1)*	0.10(2)*	$0.18(4)^*$
Mass window	0.23(1)	0.04(1)	$0.10(2)^*$	0.06(2)	0.058(3)*	0.01(1)*	$0.002(1)^*$

Backgrounds yields

II ~ 0.5

lh~ 0.2

	$Z \rightarrow \tau^+ \tau^- + j$	ets(≥1)	tī		$Z \rightarrow l^+l^-+n$ jets	$W \rightarrow lv+n$ jets	diboson
	QCD	ELWK	Full	Fast	(n ≥ 1)	(n ≥ 1)	WW/ZZ/WZ
Cross section (fb)	168.4×10 ³	1693	833×	10 ³	768.6×10^{3}	8649×10 ³	174.1×10^{3}
Trigger	51.5(1)×103	230(1)	209.8(2))×10 ³	633.8(4)×10 ³	4411(9)×10 ³	32.0(1)×10 ³
Trigger lepton	42.7(1)×103	190(1)	179.1(2))×10 ³	588.0(4)×103	3815(9)×103	28.0(1)×103
Dilepton veto	38.4(1)×103	171(1)	156.4(2))×10 ³	216.5(4)×103	3811(9)×103	23.7(1)×10 ³
Hadronic T	3062(42)	19.3(4)	5224(56)	20250(156)	32537(1012)	704(30)
Missing $E_T \ge 30 \text{ GeV}$	850(20)	12.1(3)	4251(50)		468(26)	21001(801)	474(26)
Collinear Approx.	514(15)	7.8(2)	606(19)		17(3)	324(46)	32(6)
Transverse mass	415(13)	6.5(2)	176(10)	Atlfast	11(2)	67(18)	14(3)
N jets ≥ 2	235(7)	6.0(2)	162(9)	167(1)	8(1)	49(11)	7(1)
Forward jet	40(3)	2.3(1)	32(4)	26.1(4)	1.3(6)	$\geq 2.9(3)^*$	3(1)
Jet kinematics	2.7(1)	0.72(6)	1.8(1)*	3.6(1)	0.10(1)*	0.7(1)*	0.06(1)*
Central jet veto	1.2(1)	0.49(5)	0.25(4)*	0.43(5)	0.047(6)*	0.43(6)*	0.02(1)*
Mass window	0.11(2)	0.04(1)	0.012(5)*	0.03(1)	0.008(1)*	0.020(6)*	0.001(1)*

	$Z \rightarrow \tau^+ \tau$ QCD	+jets(≥ 1) ELWK	tī	$W \rightarrow \tau v + njets$ $(n \ge 1)$	OCD-di-jet (× 5)		To be assessed
Cross section (fb)	40.3×10^{-5}	1693	833 ×10 ⁵	922×10 ⁵	19.1 10		with data
Trigger tau & MET	1756(15)	126(1)	78177(232)	39600(400)			Willi uala
2 Hadronic τs	161(4)	4.9(2)	373(16)	317(33)	2.756(3) 10°*		
Missing $E_T \ge 40 \text{ GeV}$	108(4)	3.7 (2)	335(15)	243(29)	0.97(3) 10 ³ *		
Collinear Approx.	72(3)	2.3(1)	43(5)	20(7)	1.7(2) 10 ² *		hh ~ 1_2
Di-tau Transverse mass	72(3)	2.3(1)	39(5)	18(7)	1.6(2) 10 ² *		
N jets ≥ 2	46(2)*	2.1(1)	34(5)*	8(3)*	0.86(4) 10 ² *		
Total p_T	40(2)*	1.9(1)	24(4)*	8(3)*	0.75(3) 102*		
Forward jet	17(1)*	1.1(1)	9(2)*	3(1)*	23(3)*		
Jet kinematics	1.4(1)*	0.43(6)	0.6(2)*	0.5(4)*	8(3)*	th ATLAS	
Central jet veto	0.7(1)*	0.36(6)	0.16(9)*	0.3(3)*	4(1)*		
Mass window	0.08(3)*	0.03(1)	0.03(3)*	0.1(1)*	1(1)*		

Details of background estimation on simulation

Full simulation statistics not enough to test the full rejection factor on backgrounds.

→ factorization method applied (* in previous tables is step where it is applied)
3 categories of selection cuts :

- 1. tau decays
- 2. forward jets
- 3. Correlated tau decays forward jets

Total rejection rate is product of three categories rejection. Effect on signal (strongest expected) shows agreement between sequential and factorized within 50%. Discrepancy smaller for bkgr. (30% Z, 50% tt)

Additionally, for hh final state :

- No tau identification applied, parametrized efficiency -> event weight factor
- Pythia vs ME : factor 2-3 difference in VBF jet cuts => factor 5 (x2 safety factor)

Uncertainty on this affects only current estimates of significance, real measurement will not be affected by lack of background sample statistics

VBF SM Higgs boson searches with ATLAS Stefania Xella (NBI)

29/09/2008

Details of background estimation on data

PRELIMINARY

Example : Z→ττ + jets

- Rerun Tauola
- Resimulate again

Missing $\mathbf{E}_{\mathbf{T}}$ modelled by data

-> tails well described

QCD: OS = SS

this can have large difference and systematic (eg Tevatron, W+jets, 40%)

VBF SM Higgs boson searches with ATLAS

29/09/2008

Stefania Xella (NBI)

Mass reconstruction & collinear approximation

Mass distribution after all cuts

Systematic effects on Higgs boson mass determination

and on signal selection efficiency

Source	Relative uncertainty	Effect on signal efficiency
luminosity	±3%	± 3%
muon energy scale	± 1%	$\pm 1\%$
muon energy resolution	$\sigma(p_T) \oplus 0.011 p_T \oplus 1.7 \ 10^{-4} p_T^2$	$\pm 0.5\%$
muon ID efficiency	±1 %	± 2%
electron energy scale	$\pm 0.5\%$	± 0.4 %
electron energy resolution	$\sigma(E_T) \oplus 7.3 \ 10^{-3} E_T$	± 0.3 %
electron ID efficiency	$\pm 0.2\%$	$\pm 0.4\%$
tau energy scale	$\pm 5\%$	$\pm 4.9\%$
tau energy resolution	$\sigma(E) \oplus 0.45\sqrt{E}$	$\pm 1.5\%$
tau ID efficiency	± 5%	$\pm 5\%$
	$\pm 7\% (\eta \le 3.2)$	
jet energy scale [†]	$\pm 15\% \; (\eta \ge 3.2)$	$^{+16\%}/_{-20\%}$
	\pm 5% (on $\not\!\!\!E_T$)	
jet energy resolution	$\sigma(E) \oplus 0.45\sqrt{E} \; (\eta \le 3.2)$	
	$\sigma(E) \oplus 0.67 \sqrt{E} \; (\eta \ge 3.2)$	$\pm 1\%$
b-tagging efficiency	± 5%	± 5%
forward tagging efficiency	±2%	$\pm 2\%$
central jet reconstruction efficiency	± 2 %	± 2%
total summed in quadrature		±20%

Source	Relative uncertainty	Effect on signal efficiency
PDF uncertanties	$\pm 3.5\%$	±3.5%
scale dependence on cross-section	±3%	$\pm 3\%$
scale dependence CJV efficiency	$\pm 1\%$	$\pm 1\%$
parton-shower and underlying event	$\pm \le 10\%$	$\pm < 10\%$
total summed in quadrature		$\pm < 10\%$

Significance using II and Ih final state

8

····· II-channel

0 100 105 110 115 120 125 130 135 140

χ²/ndf 17.401/5

p0 -3.099, p1 0.135

input Mass (GeV)

combined *lh*-channel *ll*-channel m_H 105 1.95 2.413.10 3.35 4.15 110 2.44 115 2.984.07 5.04 4.85 1202.92 3.87 125 2.75 3.75 4.65 130 3.38 4.18 2.46 3.99 135 2.213.32 1.80 2.70 3.24 140

5⁴⁰ 935

Wass Mass

di 25 120

115

110

105

100E

····· II-channel

100 105 110 115 120 125 130 135 140

x²/ndf 4.922/5

p0 1.105, p1 0.988

input Mass (GeV)

29/09/2008

Stefania Xella (NBI)

Effect of pile-up

Sources :

- Other soft p-p collisions in same bunch crossing
- p-p collisions in neighbouring bunch crossings
- multi-parton scattering and soft activity in p-p interaction itself

Effects:

- Additional p-p interactions can produce hadronic activity in central region, signal events fail the jet veto cut
- pile-up interactions degrade the missing \mathbf{E}_{T} determination, hence the mass distribution
- pile-up degrades the tau identification performance

Tau identification performance on signal vs rejection of q(g) jets appears rather stable when considering pile-up conditions (eff. const, half rejection wrt w/o pileup), but still needs to be optimized

Effect of pile-up

Outlook

• Recent review of discovery potential for VBF SM Higgs production with tau leptons in final state has been performed in ATLAS

For the first time:

- Full simulation including correct material budget and realistic misalignement and noise effects has been used for this review, together with most recent reconstruction and identification tools
- All tau decay final states are considered, and most up-to-date trigger simulation is used
- Strategy for determining most important backgrounds from data is in place

ATLAS can discover as a 5 sigma effect the existence of a SM Higgs boson with mass 120 GeV within the first 3 years of operation at peak luminosity 10^{33} cm⁻² s⁻¹

Back-up

VBF SM Higgs boson searches with ATLAS Stefania Xella (NBI)

24

Event selection

lh

$$m_T = \sqrt{2 p_T^{lep} \not\!\!\!E_T \cdot (1 - \cos \Delta \phi)} \le 30 \text{ GeV}$$
(7)

is required, where p_T^{lep} is the transverse momentum of the lepton in the *lh*-channel and $\Delta \phi$ is the angle between that lepton and \vec{E}_T in the transverse plane. The shape of the control samples used to estimate the signal sensitivity are obtained after these cuts; additional details of the data-driven

hh

 Di-tau transverse mass: in order to further suppress fake-τ candidates from W + jets and tt backgrounds, a cut on the di-tau transverse mass

$$m_T^{hh} = \sqrt{2 \, p_T^{hh} \not\!\!\!E_T \cdot (1 - \cos \Delta \phi)} \le 80 \, \text{GeV}$$
(8)

is required, where p_T^{hh} is the transverse momentum of the two hadronic tau system and $\Delta \phi$ represents the azimuthal angle between p_T^{hh} and $\vec{E_T}$. This variable has been identified as potentially useful for the analysis. The optimal value of this cut depends heavily on the relative amount of the W+jets, $t\bar{t}$ and QCD backgrounds, therefore, the requirement is kept fairly loose.

QCD fake rate from data

Figure 11: Track multiplicity distribution for QCD Figure 12: Expected errors of the fraction r_{tau} as a fake events and electron-fake events as well as the τ signal.

function of luminosity. The QCD events are scaled to $\times 2$ and $\times 5$.

Given a sample of tau candidates, the relative abundance of taus, electrons, and jets can be found by fitting the track multiplicity distribution with the extended likelihood function

$$L_{track}(r_{QCD}, r_{tau}) = \prod_{i}^{N} Pois(n_{exp}^{tot} \times (r_{tau} f_{tau}^{i} + r_{QCD} f_{jet}^{i} + (1 - r_{tau} - r_{QCD}) f_{lep}^{i}) |N_{obs}^{i}) \times Gaus(N_{obs}^{tot} | n_{exp}^{tot}, \sqrt{n_{exp}^{tot}})$$

$$(10)$$

$$\times Gaus(N_{lep}^{measured} | n_{exp}^{tot}(1 - r_{tau} - r_{QCD}), \Delta_{lep} n_{exp}^{tot}(1 - r_{tau} - r_{QCD}))$$

where n_{exp}^{tot} is the total number of events estimated by the fit, r_{tau} (r_{QCD}) is the fraction of the tau (jet) contribution with respect to the estimated total number of events, $\Delta_{lep} = 10\%$ is the relative uncertainty on lepton measurement, and f^i is the normalized probability for the i^{th} bin of the track multiplicity 29/09/20 distribution. The second term constrains the normalization, and the third term is an additional constraint term for the lepton contribution estimated by an independent analysis. The fit is performed to find the

tt and W+jets background shapes

Figure 14: Figure (a) shows that the shapes are similar for these backgrounds and that the shape is stable in the final stages of the cut flow. The $m_{\tau\tau}$ spectrum for $t\bar{t}$ and W+jets backgrounds after all cuts for the *ll*-channel (b) and *lh*-channel (c) with a fit to the spectrum. The solid and dashed curves show the result of the simultaneous fit to the control sample and signal candidates with and without the signal contribution, respectively.

The Profile Likelihood Ratio

Define μ to be signal rate in units of SM expectation Define ν to be the shape parameters (nuisance parameters)

- ${\scriptstyle \bullet}$ but this variable is sensitive to uncertainty on ν
- Alternatively, one can define profile likelihood ratio

$$\lambda(\mu = 0) = rac{L(data|\mu = 0, \hat{\hat{b}}(\mu = 0), \hat{\hat{v}}(\mu = 0))}{L(data|\hat{\mu}, \hat{b}, \hat{v})}$$

ightarrow where $\hat{\hat{
u}}$ is best fit with μ fixed to 0

- and $\hat{\nu}$ is best fit with μ left floating
- + note: $\lambda > 0$ unlike \mathbf{Q}_{LEP}

$$-2\log\lambda(\mu=0)\sim\chi_1^2$$

Exclusion

Using $-2 \log \lambda(\mu_{95}) = 1.64$ for exclusion No gg contribution included

Figure 18: The ratio of expected p-values for the floating and fixed mass fits as a function of the Higgs boson mass. This plot summarizes the impact of the "look-elsewhere" effect in this analysis.

Figure 19: Expected 95% exclusion of the signal rate in units of the Standard Model expectation, μ , as a function of the Higgs boson mass for the *ll* and *lh*-channels with 10 fb⁻¹ of data. The exclusion takes into account the uncertainty on the signal efficiency described in Section 5.