

Discovery potential for the SM Higgs Boson in the H \rightarrow WW \rightarrow 2I 2v channel at CMS

Fabian Stöckli Institute for Particle Physics, ETH Zürich

for the CMS Collaboration

SPLIT08

Introduction

- SM Higgs can be discovered in the H → WW channel over a wide mass range
- most sensitive channel around $m_H \sim 2 \times m_W$
- current limits from Tevatron (CDF & D0)
 - excluding Higgs with $m_H = 170 \text{ GeV}$ at 95 % CL
- at LHC: cross-section ~ 80 times larger
 - sensitivity expected at a few hundred pb⁻¹
 - discovery potential at a few fb⁻¹

Signal/Background Topology

• Higgs at LHC mainly produced in gluon- and VB-fusion

- signal topology:
 - two oppositely charged leptons
 - missing transverse energy (undetected neutrinos)
- possible background:
 - all source of real and fake multi-lepton final states + missing E_{T}
 - e.g. all processes including a W pair (WW, ttbar)

SPLIT08

Monte Carlo Datasets

- all samples (except ttbar) are produced using the LO parton-shower Monte Carlo event generator PYTHIA and passed through the CMS detector simulation
 - inclusive reweighting to NLO cross sections for all samples, except:
 - WW continuum background
 - Higgs signal sample
- ttbar produced using the generator TopRex

$pp \rightarrow H \rightarrow WW \rightarrow IvIv$		
m _H [GeV]	σ _{NLO} [pb]	
120	0.56	
160	2.34	
200	1.30	

process	σ _{NLO} [pb]
qq→WW (inclusive)	114.3
WZ (inclusive)	49.9
ZZ (inclusive)	15.3
Z→II	9640
ttbar (inclusive)	840

Trigger & Lepton Identification

• using 9 different trigger paths:

HLT paths		
μμ	ee	eµ
HLT1MuonIso	HLT1Electron	
HLT1MuonNonIso	HLT1ElectronRelaxed	
	HLT2Electron	HLTXElectronMuon
HLT2MuonNonIso	HLT2ElectronRelaxed	HLTXElectronMuonRelaxed

- electron identification:
 - based on matching of charged tracks reconstructed in the central tracker with a supercluster in the electromagnetic calorimeter
- muon identification:
 - matching a track reconstructed in the muon system with a track from the central tracker

Jets & Missing Transverse Energy

- jet reconstruction:
 - iterative cone algorithm
 - cone size R=0.5
 - min $E_{T}^{tower} = 0.5 \text{ GeV}$
 - no energy calibration applied
- jet selection:
 - |η| < 2.5 && p_T > 20 GeV OR
 - $|\eta| < 2.5 \&\& 15 \text{ GeV} < p_T < 20 \text{ GeV} \&\& \alpha > 0.2$
 - $\alpha = \sum p_T(\text{tracks})/E_T(\text{jet})$ for tracks with
 - ΔR(track-jet) <0.5
 - $|z_{\text{track}} z_{\text{vtx}}| < 0.4 \text{ cm}$

MET reconstruction:

- vector sum of raw energies in ECAL and HCAL towers
- correcting for muons

Central Jet-Veto - Why?

- ttbar overwhelming background
- easiest/safest way to reduce this background is a jet-veto

Jet-Selection:

 $-|\eta| < 2.5$

$$-p_{T} > 20 \text{ GeV } OR$$

Jet-Veto:

reject events with any jet fulfilling the selection criteria described before

process	ε _{veto}
tt→bevbev	~ 10 %
H→WW→evev	~ 60 %

SPLIT08

F. Stöckli

Pre-Selection

Lepton Selection:

two reconstructed, isolated and identified leptons fulfilling:

- p_T(lepton 1) > 10 GeV && p_T(lepton 2) > 10 GeV
- p_T(lepton 1) > 20 GeV || p_T(lepton 2) > 20 GeV
- $|\eta|$ (lepton 1) < 2.5 && $|\eta|$ (lepton 2) < 2.5
- lepton 1 and 2 have different electric charge sign

Isolation:

- tracker: sum of track transverse momenta in a cone of
- R=0.2 (0.3) for electrons (muons)
- calorimeter: sum of ECAL/HCAL energy deposits in

same cone

Kinematical Pre-Selection:

- missing transverse energy $E_T^{miss} > 30 \text{ GeV}$
- invariant mass lepton pair m_{\parallel} > 12 GeV
- # jets passing selection smaller than 3

Event Selection & Kinematics

Distributions after Pre-Selection (ee)

Event Selection & Kinematics

Distributions after Pre-Selection (eµ)

F. Stöckli

SPLIT08

Event Selection & Kinematics

Distributions after Pre-Selection (µµ)

Final Selection Variables

- jet-veto:
 - powerful against ttbar background
- max $\Delta \phi_{\parallel}$ (angle between leptons in transverse plane):
 - powerful against WW continuum background, due to scalar character of the Higgs boson (spin-correlations)
- max m_{II} (invariant mass of lepton-pair)
 - especially in ee/µµ case powerful against contamination of leptonpairs coming from Z decays
- min/max E_T^{miss} (missing transverse energy)
- max p_T^{min} (transverse momentum softer lepton)
- min/max p_T^{max} (transverse momentum harder lepton)
- all these cuts (except jet-veto) are either tuned for each masshypothesis and each lepton-channel or are the variables used in the MV analysis

Cut Based Analysis

- splitting sample in three different final state lepton configurations
 - ee, eμ, μμ
- for each Higgs mass hypothesis cut-values are tuned in order to maximize
 - $n_{\sigma}(cuts) = N_{S} / Sqrt(N_{B} + \Delta N_{B}^{2})$
 - N_S: signal events
 - N_B: background events
 - ΔN_B: expected error
 - here $\Delta N_B = 0.2 \times N_B$
- Plot from PTDR analysis
 CMS Collaboration,
 "CMS Physics Technical Design Report (Vol II),"
 J. Phys. G: Nucl. Part. Phys. 34,995-1579 (2007)

Multivariate Analysis

- used Boosted Decision Tree (BDT) and Neural Networks (NN)
 - Higgs mass hypothesis dependent
 - all final state lepton configurations considered simultaneously
 - lepton- and pre-selection applied, additional cuts:
 - $m_{||} < 80 \text{ GeV}, \Delta \phi_{||} < 160^{\circ}$
 - 60% of samples used to train classifier, 40% for limit computation CMS Preliminary

- BDT classifier output normalized to
 L=100 pb⁻¹ after
 - HLT/skimming
 - lepton-, pre-selection
 - central jet-veto
- similar results for NN analysis

Conclusions

- the H→WW→IvIv analysis has been performed within the CMS software /simulation environment in the Higgs mass range m_H=[120,200] GeV
 - lepton (e,µ) and jet reconstruction and selection, E_T^{miss} reconstruction
 - HLT as well as kinematical pre-selection cuts applied
 - Analysis covering all Higgs mass hypothesis using
 - cut-base, lepton-flavour separated analysis
 - multivariate techniques
 - expected 95% CL exclusion-sensitivity for a wide Higgs mass range for an integrated luminosity of a few hundred pb⁻¹
- ongoing studies:
 - measuring fake rates and background contamination from data
 - understanding systematic uncertainties from data