Motivation	Parton showers	ME corrections	NLO matching	LO merging	

ME+PS merging - theory

Frank Krauss

IPPP Durham

Split, 30.9.2008

<ロト <回ト < 回ト < 回ト

3

IPPP

Motivation	Parton showers	ME corrections	NLO matching	LO merging	

Outline

- Why do we care about this?
- 2 Reminder: Parton showers
- 3 Correcting the parton shower to LO
- Matching the parton shower with NLO ME's
- 5 Merging the parton shower with LO ME's
- 6 Conclusion & outlook

Motivation	Parton showers	ME corrections	NLO matching	LO merging	

IPPP

Motivation	Parton showers	ME corrections	NLO matching	LO merging	

Parton showers

• Universal pattern of soft & collinear radiation:

$$\mathrm{d}\sigma_{N+1} \sim \mathrm{d}\sigma_N \sum_{a \in N} \frac{\mathrm{d}t_a}{t_a} \alpha_s \,\mathrm{d}z \, P_{a \to bc}(z) \,.$$

- Introduce "resolution of partons" (e.g. p_{\perp}^{\min}) \implies Large logarithms at each emission.
- Resummation of soft & collinear logs in Sudakov form factor:

$$\Delta_a(t, t_0) = \exp\left[-\int_{t_0}^t \frac{\mathrm{d}t'}{t'} \int_{z_-}^{z_+} \mathrm{d}z \,\alpha_s \, P_{a \to bc}(z)\right]$$

• Interpretation: No-emission probability (\rightarrow simulation).

(日) (同) (三) (三)

Motivation	Parton showers	ME corrections	NLO matching	LO merging	

n-jet rates @ NLL

S.Catani et al. Phys. Lett. B269 (1991) 432

Example: NLL-jet rates in $\gamma^* \rightarrow$ jets

3

<ロト <回ト < 回ト < 回ト

Motivation	Parton showers	ME corrections	NLO matching	LO merging	

ME vs. PS

- Matrix elements good for: hard, large-angle emissions; take care of interferences.
- Parton shower good for: soft, collinear emissions; resums large logarithms.
- Want to combine both! Avoid double-counting.

3 N 3

Motivation	Parton showers	ME corrections	NLO matching	LO merging	

IPPF

Motivation	Parton showers	ME corrections	NLO matching	LO merging	

Practicalities of ME-corrections

- Obviously, ME < PS is not always fulfilled.
- Could enhance *PS* expression by a (large) factor. Question: Efficiency of the approach?
- Therefore: realized in few processes only: Best-known: $ee \rightarrow q\bar{q}, q\bar{q} \rightarrow V, t \rightarrow bW$

- < 🗇 🕨 < 🖹 🕨

Motivation	Parton showers	ME corrections	NLO matching	LO merging		
Μ	C@NLO					
			S.Frixione, B.R.Web	ber. JHEP 0206 (2002	2) 029	
		S.F	rixione, P.Nason, B.R.We	bber, JHEP 0308 (200	03) 007	
	147					
	VVant:					
	NLO-Norm	alisation and firs	t (hard) emissio	n correct,		
	 Soft emissions correctly resummed in PS. 					
	• Mathadı					
	Internoa:					
	 Modify sub 	otraction terms for	or real infrared d	livergences,		
	 use first or 	der parton showe	er-expression,			
	this is proc	ess-dependent!				

• In practise much more complicated.

• Implemented for DY, W-pairs, $gg \rightarrow H$, Q-pairs.

<ロト <回ト < 回ト < 回ト

< 🗗 🕨

э

IPPP

F. Krauss

Motivation	Parton showers	ME corrections	NLO matching	LO merging	

PowHEG

S.Frixione, P.Nason, C.Oleari, JHEP 0711 (2007) 070

(日) (同) (三) (三)

- Occurrence of negative weights in MC@NLO.
- Improved matching scheme avoiding negative weights:
 - Generate process with LO kinematics and NLO weight
 - Generate hardest emission according to real-emission ME: $\sim \exp \left[-\int d\Phi_1 \sigma_{n+1}(\Phi_{n+1})/\sigma_n(\Phi_n)\right]$
 - Effect: Replacing the approximation (splitting function) with exact result
- Reproduces rate and first emission at NLO accuracy.
- Shower-independent: The method of choice.

Motivati	on Parton showers	ME corrections	NLO matching	LO merging	
(Combining MEs	& PS: LO-	Merging		
		S.Catani, F.K.,	R.Kuhn and B.R.Webber F.K.	JHEP 0111 (2001) 063 JHEP 0208 (2002) 013	3 5
	Want:				
	 All jet emis Soft emission 	sions correct at	tree level $+$ LL,		
	- Mathaal				
	Ivietnod:				

- Separate Jet-production/evolution by $Q_{\rm jet}$ (k_{\perp} algorithm).
- Produce jets according to LO matrix elements
- re-weight with Sudakov form factor + running α_s weights,
- veto jet production in parton shower.
- Process-independent implementation.

• • • • • • • • • • • •

Motivation	Parton showers	ME corrections	NLO matching	LO merging	

n-jet rates @ NLL, again

S.Catani et al. Phys. Lett. B269 (1991) 432

At NLL-Accuracy

$$\mathcal{R}_2(Q_{\text{jet}}) = \left[\Delta_q(E_{\text{c.m.}}, Q_{\text{jet}})\right]^2$$

$$\begin{aligned} \mathcal{R}_{3}(Q_{\text{jet}}) &= \Delta_{q}(E_{\text{c.m.}}, Q_{\text{jet}}) \\ &\cdot \int \mathrm{d}q \left[2\alpha_{s}(q) \Gamma_{q}(E_{\text{c.m.}}, q) \frac{\Delta_{q}(E_{\text{c.m.}}, Q_{\text{jet}})}{\Delta_{q}(q, Q_{\text{jet}})} \right] \\ &\Delta_{q}(q, Q_{\text{jet}}) \Delta_{g}(q, Q_{\text{jet}}) \end{bmatrix} \end{aligned}$$

Motivation	Parton showers	ME corrections	NLO matching	LO merging	

Algorithm as scale-setting prescription

- Example: p_{\perp} distribution of jets @ Tevatron
- Consider exclusive W + 1- and W + 2-jet production

Comparison with MCFM; J.Campbell and R.K.Ellis, Phys. Rev. D 65 (2002) 113007 in : F.K., A.Schälicke, S.Schumann and G.Soff, Phys. Rev. D 70 (2004) 114009

Motivation	Parton showers	ME corrections	NLO matching	LO merging	

《曰》《聞》《臣》《臣》 [] 臣

Motivation	Parton showers	ME corrections	NLO matching	LO merging	
Othe	er prescripti	ons			
•	CKKW-L		L.Lönnblad	I, JHEP 0205 (2002) 04	46
	 Start with Cluster bate Use "PS-I Use first t Run show 	ME, jets defin ackwards with s nistory" to fix s rial emission to er below jet sca	ed with k_{\perp} alg shower-specific starting condition oreject/accept ale.	orithm, k_{\perp} , ons for shower event	,
•	MLM		M.Mangano <i>et al.</i> , Nue	cl. Phys. B632 (2002) 3	43
	 Start with Feed conf Match co 	ME, jets defin iguration into s	ed with cones, hower, through	LHA interfac	ce,

• Match cone jets before hadronisation with partons, reject event in case of mismatch.

IPPP

Motivation

IPPP

Comparison with other merging algorithms: MLM

J.Alwall et al. Eur. Phys. J. C53 (2008) 473

Jet rates in inclusive W+jets at Tevatron

F. Krauss

ME+PS merging - theory

 Motivation
 Parton showers
 ME corrections
 NLO matching
 LO merging
 Su

 Comparison with other merging algorithms:
 MLM

 J.Alwall et al. Eur. Phys. J. C53 (2008) 473

 Jet rates in inclusive W+jets at LHC

F. Krauss

ME+PS merging - theory

- イロト (個) (注) (注) (注) 三 のへの

Motivation	Parton showers	ME corrections	NLO matching	LO merging	Summary

Conclusion

- Astonishing change of paradigm in MC generators: Pushing towards precision (matching and merging)
- Sociological: Field is becoming playground of QCD-theorists

 \implies new ideas, new technology (NLO)

- Practical: Development of better tools.
- Extremely powerful if used together!
- But: Validation needed (see next talk)

Motivation	Parton showers	ME corrections	NLO matching	LO merging	Summary

Outlook

• Work started to push for NLO merging:

- Calculate exclusive NLO for exactly n jets
- Select configuration according to this rate and NLO-ME.
- Reject with modified Sudakov form factor (expand to first order in α, and subtract)
- Generate hardest emission with ME (like PowHEG).
- Also: better control due to better showers.
- Time scale for e^+e^- : first half of 2009.
- Similar effort in CKKW-L (Ariadne) under way.

IPPP

F. Krauss ME+PS merging - theory

IPPP

Motivation	Parton showers	ME corrections	NLO matching	LO merging	Summary

Implementing CSW recursion relations: A snaphot

F.Cachazo, P.Svrcek and E.Witten, JHEP 0409 (2004) 006

• Obtained summing over colours and helicities, sampling much better

Jet cross sections @ LHC, $k_{\perp}^{\min} = 20 \text{GeV}$

Process	helicity	MHV where possible	MHV only
			$(\leq 2 \text{ quark lines})$
$jj \rightarrow jj$	745.85 µb±0.10%	745.85 μb±0.10%	
	57 s	44 s	
jj → jjj	81.274 µb±0.20%	81.274 μb±0.20%	
	826 s	166 s	
$gg \rightarrow gggg$	10.112 µb±0.23%	10.145 µb±0.23%	
	1.5 ks	0.6 ks	
jj → jjjj	23.23 µb±0.27%	23.245 μb±0.26%	23.208 μb±0.26%
	35 ks	7.6 ks	5.8 ks
$gg \rightarrow ggggg$	2.6592 μb±0.16%	2.6915 μb±0.15%	
	131 ks	41 ks	
jj → jjjjj	not possible	7.3829 μb±0.25%	7.3294 μb±0.17%
		970 ks	295 ks

F. Krauss

Motivation	Parton showers	ME corrections	NLO matching	LO merging	Summary

COMIX - a new matrix element generator for Sherpa

- Colour-dressed Berends-Giele amplitudes in the SM
- Fully recursive phase space generation
- Example results (cross sections):

	$gg \rightarrow$	ng	g Cross section [pb]					
	n		8	9	10	11	12	
	\sqrt{s} [G	ieV]	1500	2000	2500	3500	5000	
	Comix		0.755(3)	0.305(2)	0.101(7)	0.057(5)	0.019(2)	
	Malto	ni (2002)	0.70(4)	0.30(2)	0.097(6)			
	Alpger	1 · ·	0.719(19)					
σ [μb]		Number of jets						
$b\bar{b} + QC$	D jets	0	1	2	3	4	5	6
Comix		4780(5)	8.83(2)	1.826(8)	0.459(2)	0.1500(8)	0.0544(6)	0.023(2)
ALPGEN		4760(6)	8.83(1)	1.822(9)	0.459(2)	0.150(2)	0.053(1)	0.0215(8)
AMEGIC-	++	4730(4)	8.84(2)	1.817(6)				

F. Krauss

Motivation	Parton showers	ME corrections	NLO matching	LO merging	Summary

COMIX - a new matrix element generator for Sherpa

- Colour-dressed Berends-Giele amplitudes in the SM
- Fully recursive phase space generation
- Example results (phase space performance):

