

ME-PS Comparisons to Tevatron Data

Sabine Lammers
Indiana University
(formerly Columbia University)
October 1, 2008

Motivation

- N(N)LO predictions not available for many processes of interest, particularly those with large jet multiplicities and heavy flavor components.
- ME+PS models are used extensively to simulate signal and backgrounds, particularly for multijet topologies.
- Parton shower models can vary and are constantly being improved thanks to our phenomenologist friends.
- Experimentalists massage (calibrate to data) simulations through reweighting and empirically derived k-factors.
- Tevatron dataset is now large enough and systematics are constrained well enough to use data to vet ME+PS models.

New Physics signals

- New physics share signatures with TeV backgrounds that are currently being pinned down.
- Estimating background with data has its own set of challenges.

New Physics signals

- New physics share signatures with TeV backgrounds that are currently being pinned down.
- Estimating background with data has its own set of challenges.

Final States

- W/Z + light flavor jets
- W/Z + heavy flavor jets

Result(1/fb)	DØ	CDF	
W+jets		0.32	
Z+jets	1.0/0.95	2.5/1.7	
W+b-jets	0.38	1.9	
Z+b-jets	0.18	2.0/0.33	
W+c-jets	1.0	1.8	

in red = published

- dijet azimuthal decorrelations
- Inclusive vs. Exclusive states

This talk will focus on results with comparisons to ME+PS models

ME-PS Models

- Many programs on the market: Alpgen, Sherpa, MC@NLO, Madgraph, Helac, Ariadne, Madevent, ...
- This talk will focus on MLM vs. CKKW inspired models, where we have most comparisons to data

CKKW

- the separation of ME and PS for different multijet processes is achieved through a k_T-measure
- undesirable jet configurations are rejected through reweighting of the matrix elements with analytical Sudakov form factors and factors due to different scales in α_{s}

• MLM

- matching parameters chosen, ME and PS jets matched in each n-parton multiplicity, events vetoed which do not have complete set of matched jets
- further suppression required to prevent double counting of n and n+1 samples (replaces Sudakov reweighting in CKKW)

 $Z/Y^* \rightarrow e^+e^-+jets$

Corrected to hadron level with phase space:

- $p_T^{jet} > 30 \text{ GeV}$
- $|y^{\text{jet}}| < 2.1$
- R = 0.7 cone jets
- $\Delta R_{(e,jet)} < 0.7$

MCFM corrected for hadronization

• NLO predicts correct normalization, with Kfactor ~1.4

Z->ee selection with

- electron p_T > 25 GeV
- 70 GeV < M_{ee} < 100 GeV
- cone jet $p_T > 15$ GeV, R=0.5, $|\eta| < 2.5$

MC predictions normalized to #Z/γ events in data

systematic uncertainties dominated by Jet Energy Scale and Jet resolution

- Sherpa implementation of CKKW
 - tree level diagrams
 - phase space cut to avoid soft/collinear divergences
 - reweighting of ME to consistently match with PS
- Although errors are large, Sherpa accurately predicts jet multiplicity

data w/stat error data w/stat & sys error Pythia range stat Pythia range stat & sys

PYTHIA v6.314

SHERPA v1.0.6

PLHC - ME/PS Comparisons with Data - October 1, 2008

$p_T^1 > p_T^2 > p_T^3$ $\eta 1 < \eta 3 < \eta 2 \text{ or } \eta 2 < \eta 3 < \eta 1$

 $\mathcal{L} = 1.0/\text{fb}$

 $Z \rightarrow \mu \mu + jet + X$

data corrected to particle level - can be used to tune MCs

Phase space:

 $\begin{array}{l} 65 \text{ GeV} < M_{\mu\mu} < 115 \text{ GeV}, \\ R_{cone} = 0.5, \ p_T^{jet} > 20 \text{ GeV} \\ |y^{jet}| < 2.8, \ |y^{\mu}| < 1.7 \end{array}$

ratios relative to Alpgen+Pythia

migration matrix
-> used to unfold data
large migrations,
especially at low p_T

Alpgen+Pythia

 accurately predicts
 shape of p_T^{jet}

PYTHIA v6.418
ALPGEN v2.13+PYTHIA v6.323

80 100 120 140 160 180 200 ALPGEN v2.13+HERWIG v6.510

p_T^Z (GeV) SHERPA v1.1.1 (native showering)

$Z \rightarrow \mu \mu + jet + X$

data corrected to particle level - can be used to tune MCs

Phase space:

 $\begin{array}{l} 65 \text{ GeV} < M_{\mu\mu} < 115 \text{ GeV}, \\ R_{cone} = 0.5, \ p_T^{jet} > 20 \text{ GeV} \\ |y^{jet}| < 2.8, \ |y^{\mu}| < 1.7 \end{array}$

ratios relative to Alpgen+Herwig

- Dramatic difference with Alpgen+Herwig at low Z p_T
- p_T^{jet} shape described very well
- All LO predictions underestimate data normalization

$Z \rightarrow \mu \mu + jet + X$

particle jets: D0RunII midpoint algorithm (for particle an detector jets) with R=0.5

ratios relative to Alpgen+Pythia

migrations much reduced in y^{jet}

- Alpgen+Pythia predicts narrower y^{jet} than data
- ◆ Sherpa describes y^{jet} shape well.
- ◆ Both underestimate data normalization

$Z \rightarrow \mu \mu + jet + X$

particle jets: D0RunII midpoint algorithm (for particle an detector jets) with R=0.5

ratios relative to Alpgen+Herwig

migrations much reduced in y^{jet}

- Alpgen+Herwig and Sherpa provide good modeling of y^{jet}.
- Both underestimate data normalization.

Z+heavy flavor jets

Z->ee/ $\mu\mu$ + b + X jet $p_T > 20 \text{ GeV}$ $jet |\eta| < 1.5$ secondary vertex

R=0.7 cone jets data is corrected to hadron level statistics limited analysis

PYTHIA v6.2 ALPGEN v2.13

 $\mathcal{L} = 2.0/\text{fb}$

tagging

Measure: $\sigma(Z+b \text{ jets})$

Source of Uncertainty	Uncertainty (%)		
jet energy scale	2.4		
MC $\eta^{\rm jet}$ dependence	2.8		
$MC E_T^{\text{jet}}$ dependence	8.0		
b tagging efficiency	4.1		
single/double b/c quark in jet	3.8		
track reconstruction efficiency	5.7		
b hadron multiplicity	0.8		
fake lepton background	1.8		
other backgrounds	0.8		
Z selection efficiency	1.8		
luminosity	5.8		
total	14		

Pythia does surprisingly well in describing overall

W->eV+jets

All distributions corrected to particle level with: lepton $E_{T}^{e} > 20 \text{ GeV}, |\eta^{e}| < 1.1$ $E_T^{\nu} > 30 \text{ GeV, } m_T^{W} > 20 \text{ GeV/c}^2$ jet $p_T > 20$ GeV, R=0.4, $|\eta| < 2.0$

- MCFM: NLO, no shower
- MLM: Alpgen v2.12+Herwig v6.5, MLM matching
- SMPR: Madgraph v4+Pythia v6,3, CKKW matching

NLO does excellent job of modeling jet p_T shape and normalization for <=2 jets

MLM fails, especially at low pT SMPR does better job at high n-jet

η(jet2)

 $WV \rightarrow ev + 2jets + X$

electron $p_T > 20$ GeV missing $E_T > 20$ GeV jet $p_T > 20$ GeV leading jet $p_T > 30$ GeV jet $|\eta| < 2.5$

detector level distributions

p_T spectra well modeled by Alpgen

 Data jet η distribution is broader than Alpgen

DØ work in progress

PLHC - ME/PS Comparisons with Data - October 1, 2

W+heavy flavor jets

 $\mathcal{L} = 1/\text{fb}$

 Measure ratio W+c-jets/W+jets to cancel uncertainties

> Alpgen prediction: 0.04 pb Result: measure $\sigma(W+cjets)/\sigma(W+jets)$ = 0.071 ± 0.017 (stat)

Alpgen v2.05 + Pythia v6.323

$$\sigma_{Wc} imes \mathrm{BR}(W o \ell
u) = rac{N_{\mathrm{tot}}^{OS-SS} - N_{\mathrm{bkg}}^{OS-SS}}{Acc \cdot \int L \; \mathrm{dt}}$$

NLO prediction: 11.0 pb Result: measure $\sigma(W+cjets)xBR(W->|v|)$ = 9.8 ± 2.8 (stat)^{+1.4}_{-1.6} (sys) + 0.6(lumi) pb.

 $\mathcal{L} = 1.8/\text{fb}$

W+heavy flavor jets

Phase space:

• a truth level electron or muon with $p_T > 20$ GeV/c, $|\eta| < 1.1$

• a truth level neutrino with $p_T > 25 \text{ GeV}/c$

• 1 or 2 total truth level jets with $E_T > 20 \text{ GeV}/c^2$, $|\eta| < 2.0$

Backgrounds: ttbar (40%), single top (30%), fake W (15%), WZ (5%)

Alpgen prediction: 0.78 pb
Result: measure $\sigma(W+bjets)xBR(W\rightarrow lv)$ $\sigma xBR = 2.74 \pm 0.27 \text{ (stat)} \pm 0.42 \text{ (sys) pb.}$ $\rightarrow 3.5x \text{ bigger!}$

much larger difference than seen in W+c-jets

Still to come:

- differential distributions
- comparisons to Sherpa, Pythia

Vertex Mass Fit

 $\mathcal{L} = 1.9/\text{fb}$

Dijets

Allows to study transition from soft to hard QCD processes in single variable

- Sherpa, Herwig and TeVtuned Pythia perform well.
- Alpgen+Herwig and Alpgen+Pythia perform reasonably well.

arXiv: hep-ph/0610012

Summary

Performance in normalization and shape	W+jet	Z+jet	W+hf jet	Z+hf jets	Dijet Δφ
Alpgen/MLM + Pythia		X? (energy) X (angles)	×	XX	
Alpgen/MLM + Herwig	XX (energy) X (angles)	(energy) (angles)			
Sherpa/CKKW		(energy) (angles)			
Madgraph/ CKKW	(energy) (angles)				
Pythia		XX		V V	

- good- problematic- jury is still out

These are indications from what has been measured so far, and should be taken somewhat lightly picture is still evolving

Further Studies

- Similar studies of Z+jets ongoing for Z->ee decays @ DØ
 - analysis with unfolded with n-jet exclusive jet p_T in 1, 2, 3-jet events coming
- Unfolding Angular distributions between Z boson and jets from DØ
- Comparisons between W+jets data and Alpgen, Sherpa from DØ
- Differential distributions, comparisons to Sherpa, Pythia in W+b-jets from CDF
- Publication of WV analysis

Conclusions

- With ~3x10⁴/fb Z and ~6x10⁵/fb W events on tape, Tevatron dataset is now large enough and adequately understood to vet ME-PS models for many final states involving vector bosons.
- A complete picture is still forming.
- ME-PS models are generally superior to Pythia in predicting higher jet multiplicity events and their distributions.
- ME-PS models are not able to predict correct normalization of many final states.
- Some indications that Alpgen/MLM can describe p_T
 distributions, Sherpa/CKKW can describe angular distributions
 in W/Z+jets.
- Distinguishing between models of W/Z + heavy flavor jets will require more data or increased experimental acceptance.

Final Thought

A concerted effort by experimentalists and theorists is needed to resolve existing puzzles and improve predictions of ME-PS programs which are critical for NP searches at both the Tevatron and LHC.

Tuning to Tevatron data is a good opportunity.

TeV-->LHC

Acknowledgements:

- Thanks to Gavin Hesketh for producing all Z+jets predictions on Slides 10-14

Backup

 Trends for 3rd jet similar to 1st and 2nd

Status of TeV and the experiments

Run II Integrated Luminosity

19 April 2002 - 20 September 2008

